Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Agata is active.

Publication


Featured researches published by Jun Agata.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2002

Human Endothelial Nitric Oxide Synthase Gene Delivery Promotes Angiogenesis in a Rat Model of Hindlimb Ischemia

Robert S. Smith; Kuei-Fu Lin; Jun Agata; Lee Chao; Julie Chao

Objective—Endothelium-derived NO has been shown to mediate the mitogenic effect of vascular endothelial growth factor on cultured microvascular endothelium. To evaluate the role of endothelial NO synthase (eNOS) in angiogenesis in the ischemic hindlimb, we engineered an adenovirus containing human eNOS cDNA. Methods and Results—After gene transfer, expression of eNOS in cultured cells was detected by increased intracellular cGMP and nitrate/nitrite levels and NO synthase activity. Adenovirus containing either the eNOS or luciferase gene was injected into the adductor muscle of rat hindlimbs immediately after femoral artery removal. Human eNOS protein was detected throughout the course of the experiment by immunostaining. Significant increases in blood perfusion were monitored by laser Doppler imaging from 2 to 4 weeks after gene delivery in the ischemic hindlimb of rats receiving eNOS compared with control rats receiving the reporter gene. An increase in regional blood flow was also detected after eNOS gene transfer by a fluorescent microsphere assay. eNOS gene delivery in the ischemic hindlimb resulted in significant increases in intracellular cGMP levels and in capillary density identified by anti–CD-31 immunostaining. Angiogenesis was further confirmed in mice after eNOS gene transfer by increased hemoglobin content in Matrigel implants. Conclusions—Taken together, these results indicate that eNOS enhances angiogenesis and raises the potential of eNOS gene transfer for modulation of vascular insufficiency.


Hypertension | 2002

Kallikrein Gene Delivery Improves Cardiac Reserve and Attenuates Remodeling After Myocardial Infarction

Jun Agata; Lee Chao; Julie Chao

Abstract—In this study, we used the somatic gene delivery approach to explore the role of the kallikrein-kinin system (KKS) in cardiac remodeling and apoptosis after myocardial infarction (MI). Rats were subjected to coronary artery ligation to induce MI, and adenovirus carrying the human tissue kallikrein or luciferase gene was injected into the tail vein at 1 week after surgery. Cardiac output gradually decreased from 2 to 6 weeks after MI, whereas delivery of the kallikrein gene prevented this decrease. Cardiac responses to dobutamine-induced stress were improved in rats receiving kallikrein gene as compared with rats receiving control virus at 6 weeks after MI. Kallikrein significantly improved cardiac remodeling by decreasing collagen density, cardiomyocyte size, and left ventricular internal perimeter and increasing capillary density in the heart at 6 weeks after MI. Kallikrein gene transfer attenuated myocardial apoptosis, which was positively correlated with remodeling parameters in the heart at 2 weeks after MI. Endothelial dysfunction, characterized by increased vascular resistance, decreased left ventricular blood flow, and decreased cardiac nitric oxide levels, existed in remodeled hearts at 2 weeks after MI, whereas kallikrein gene transfer improved these parameters. Kallikrein gene delivery improved cell survival parameters as shown by increased phospho-Akt and reduced caspase-3 activation at 2 weeks after MI. This study indicates that the kallikrein-kinin system plays an important role in preventing the progression of heart failure by attenuating cardiac hypertrophy and fibrosis, improving endothelial function, and inhibiting myocardial apoptosis through the Akt-mediated signaling pathway.


Hypertension | 2000

Bradykinin B1 Receptor Mediates Inhibition of Neointima Formation in Rat Artery After Balloon Angioplasty

Jun Agata; Robert Q. Miao; Katsutoshi Yayama; Lee Chao; Julie Chao

We evaluated the effects of the kallikrein-kinin system on the proliferation and migration of primary cultured vascular smooth muscle cells (VSMCs) in vitro and neointima formation in balloon-injured rat carotid arteries in vivo. In cultured rat VSMCs, tissue kallikrein inhibited cell proliferation, and this inhibitory effect was blocked by Sar-Tyr-Aca(epsilon)-Lys [D-betaNal(7), Ile(8)]-des-Arg(9)-bradykinin, a bradykinin B(1) receptor antagonist, and by icatibant, a bradykinin B(2) receptor antagonist. Platelet-derived growth factor significantly increased the expression of the B(1) receptor but not the B(2) receptor in VSMCs. Platelet-derived growth factor-induced cell migration was significantly attenuated by des-Arg(9)-bradykinin and to a lesser degree by bradykinin. Endogenous B(1) receptor mRNA increased in rat carotid arteries after balloon angioplasty. After local delivery of adenovirus carrying the human tissue kallikrein gene into the rat carotid artery, we observed a 54% reduction in the intima/media ratio at the injured site compared with the control ratio (n=7, P:<0.01). Administration of the B(1) receptor antagonist via minipumps blocked the protective effect of kallikrein and partially reversed the intima/media ratio toward the control ratio. Kallikrein gene delivery results in the regeneration of endothelium compared with the control groups, and the B(1) receptor antagonist abolished this effect. Nitrite/nitrate, cGMP, and cAMP levels in balloon-injured arteries significantly increased after kallikrein gene delivery, whereas the B(1) receptor antagonist abolished these increases (n=4 or 5, P:<0.05). These results indicate that the B(1) receptor contributes to the reduction of neointima formation via the promotion of reendothelialization and inhibition of VSMC proliferation and migration through NO-cGMP and cAMP signaling pathways. This study provides significant implications in treating restenosis after revascularization.


Peptides | 2001

Human adrenomedullin gene delivery protects against cardiovascular remodeling and renal injury.

Julie Chao; Kazuo Kato; Jenny J. Zhang; Eric Dobrzynski; Cindy Wang; Jun Agata; Lee Chao

We investigated the potential roles of adrenomedullin (AM) in cardiovascular and renal function by somatic gene delivery. We showed that a single intravenous injection of the human AM gene under the control of cytomegalovirus promoter/enhancer induces a prolonged delay in blood pressure rise for several weeks in spontaneously hypertensive rats, Dahl salt-sensitive, DOCA-salt, and two-kidney one-clip hypertensive rats as compared to their respective controls injected with a reporter gene. Expression of the human AM transcript was identified in the heart, kidney, lung, liver and aorta of the rat after adenovirus-mediated AM gene delivery by RT-PCR followed by Southern blot analysis. Immunoreactive human AM levels were measured in rat plasma and urine following AM gene delivery. AM gene delivery induced significant reduction of left ventricular mass in these hypertensive animal models. It also reduces urinary protein excretion and increases glomerular filtration rate, renal blood flow and urinary cAMP levels. AM gene transfer attenuated cardiomyocyte diameter and interstitial fibrosis in the heart, and reduced glomerular sclerosis, tubular disruption, protein cast accumulation and renal cell proliferation in the kidney. In the rat model with myocardial ischemia/reperfusion injury, AM gene delivery significantly reduced myocardial infarction, apoptosis, and superoxide production. Furthermore, local AM gene delivery significantly inhibited arterial thickening, promoted re-endothelialization and increased vascular cGMP levels in rat artery after balloon angioplasty. Collectively, these results indicate that human AM gene delivery attenuates hypertension, myocardial infarction, renal injury and cardiovascular remodeling in animal models via cAMP and cGMP signaling pathways. These findings provide new insights into the role of AM in cardiovascular and renal function.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2000

Adenovirus-Mediated Human Tissue Kallikrein Gene Delivery Inhibits Neointima Formation Induced by Interruption of Blood Flow in Mice

Costanza Emanueli; Maria Bonaria Salis; Julie Chao; Lee Chao; Jun Agata; Kuei-Fu Lin; Antonella Munaò; Stefania Straino; Alessandra Minasi; Maurizio C. Capogrossi; Paolo Madeddu

Tissue kallikrein cleaves kininogen to produce vasoactive kinin peptides. Binding of kinins to bradykinin B(2) receptors on vascular endothelial cells stimulates the release of nitric oxide and prostacyclin, thus activating the cGMP and cAMP pathways. In this study, we evaluated the effects of adenovirus-mediated human tissue kallikrein gene (Ad.CMV-cHK) delivery in a mouse model of arterial remodeling induced by permanent alteration in shear stress conditions. Mice underwent ligature of the left common carotid artery and were injected intravenously with saline or 1.8 x 10(9) plaque-forming units of Ad.CMV-cHK or control virus (Ad.CMV-LacZ). Fourteen days after surgery, morphometric analysis revealed that Ad. CMV-cHK reduced neointima formation by 52% (P<0.05) compared with Ad. CMV-LacZ. Expression of human tissue kallikrein (HK) mRNA was detected in mouse carotid artery, aorta, kidney, heart, and liver, and recombinant HK was present in the urine and plasma of mice receiving HK gene. Kallikrein gene transfer resulted in increases in urinary kinin, cGMP, and cAMP levels. The protective action of Ad. CMV-cHK on neointima formation was significantly reduced (P<0.05) in mice with knockout of the kinin B(2) receptor gene compared with wild-type control mice (J129Sv mice). In contrast, the effect of Ad. CMV-cHK was amplified (P<0.05) in transgenic mice overexpressing human B(2) receptor compared with wild-type control mice (c57/Bl6 mice). Thus, the inhibitory effect of recombinant kallikrein on structural alterations caused by the interruption of blood flow appears to be mediated by the B(2) receptor. These results provide new insight into the role of the tissue kallikrein-kinin system in vascular remodeling and suggest the application of HK gene therapy to treat restenosis and atherosclerosis.


Regulatory Peptides | 2003

Adrenomedullin gene delivery inhibits neointima formation in rat artery after balloon angioplasty.

Jun Agata; Jenny J. Zhang; Julie Chao; Lee Chao

Adrenomedullin (AM) is a potent vasodilator expressed in tissues relevant to cardiovascular function. AM peptide has been shown to inhibit the proliferation and migration of vascular smooth muscle cells in vitro. However, the effect of AM on blood vessels after vascular injury in vivo has not been elucidated. In order to explore the potential roles of AM in vascular biology, we evaluated the effect of AM by local gene delivery on neointima formation in balloon-injured rat artery. Adenovirus carrying the human AM cDNA under the control of cytomegalovirus promoter/enhancer (Ad.CMV-hAM) was generated by homologous recombination. After delivery of Ad.CMV-hAM into rat left carotid artery, we identified the expression of human AM mRNA in the left carotid artery, but not in the right carotid artery, heart or kidney by reverse transcription-polymerase chain reaction (RT-PCR) followed by Southern blot analysis. Following local AM gene delivery, we observed a 51% reduction in intima/media ratio at the injured site as compared with that of control rats injected with the luciferase gene (n=7, P<0.01). AM gene transfer resulted in regeneration of endothelium as compared to the control. AM gene delivery significantly increased cGMP levels in balloon-injured arteries. These results indicate that AM contributes to reduction of neointima formation by promotion of re-endothelialization and inhibition of vascular smooth muscle cell proliferation via cGMP-dependent signaling pathway.


Blood | 2002

Kallistatin is a new inhibitor of angiogenesis and tumor growth

Robert Q. Miao; Jun Agata; Lee Chao; Julie Chao


American Journal of Physiology-heart and Circulatory Physiology | 2003

Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion.

Kazuo Kato; Hang Yin; Jun Agata; Hideaki Yoshida; Lee Chao; Julie Chao


Life Sciences | 2005

Human endothelial nitric oxide synthase gene delivery protects against cardiac remodeling and reduces oxidative stress after myocardial infarction.

Robert S. Smith; Jun Agata; Chun-Fang Xia; Lee Chao; Julie Chao


Kidney International | 2000

Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure.

William C. Wolf; Hideaki Yoshida; Jun Agata; Lee Chao; Julie Chao

Collaboration


Dive into the Jun Agata's collaboration.

Top Co-Authors

Avatar

Julie Chao

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lee Chao

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Eric Dobrzynski

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hang Yin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Hideaki Yoshida

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jenny J. Zhang

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kuei-Fu Lin

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Robert Q. Miao

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

David Montanari

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kazuo Kato

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge