Jun Geun Shin
Gwangju Institute of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jun Geun Shin.
PLOS ONE | 2013
Ho Sik Hwang; Jun Geun Shin; Byeong Ha Lee; Tae Joong Eom; Choun-Ki Joo
Recently, we reported obtaining tomograms of meibomian glands from healthy volunteers using commercial anterior segment optical coherence tomography (AS-OCT), which is widely employed in clinics for examination of the anterior segment. However, we could not create 3D images of the meibomian glands, because the commercial OCT does not have a 3D reconstruction function. In this study we report the creation of 3D images of the meibomian glands by reconstructing the tomograms of these glands using high speed Fourier-Domain OCT (FD-OCT) developed in our laboratory. This research was jointly undertaken at the Department of Ophthalmology, Seoul St. Marys Hospital (Seoul, Korea) and the Advanced Photonics Research Institute of Gwangju Institute of Science and Technology (Gwangju, Korea) with two healthy volunteers and seven patients with meibomian gland dysfunction. A real time imaging FD-OCT system based on a high-speed wavelength swept laser was developed that had a spectral bandwidth of 100 nm at the 1310 nm center wavelength. The axial resolution was 5 µm and the lateral resolution was 13 µm in air. Using this device, the meibomian glands of nine subjects were examined. A series of tomograms from the upper eyelid measuring 5 mm (from left to right, B-scan) × 2 mm (from upper part to lower part, C-scan) were collected. Three-D images of the meibomian glands were then reconstructed using 3D “data visualization, analysis, and modeling software”. Established infrared meibography was also performed for comparison. The 3D images of healthy subjects clearly showed the meibomian glands, which looked similar to bunches of grapes. These results were consistent with previous infrared meibography results. The meibomian glands were parallel to each other, and the saccular acini were clearly visible. Here we report the successful production of 3D images of human meibomian glands by reconstructing tomograms of these glands with high speed FD-OCT.
IEEE Journal of Selected Topics in Quantum Electronics | 2014
Hwi Don Lee; Myung Yung Jeong; Chang-Seok Kim; Jun Geun Shin; Byeong Ha Lee; Tae Joong Eom
We demonstrate a highly linearly wavenumber-swept active mode locking (AML) fiber laser in the 1.3 μm region for in-vivo imaging in optical coherence tomography (OCT) without wavenumber space resampling. In this all-electric AML wavenumber-swept mechanism, the conventional wavelength selection filter is eliminated, and instead a suitable programmed electric modulation signal is applied directly to the gain medium. For a high sweep rate (up to 1 MHz) along the wavenumber, the fiber cavity structure is made as short as possible (0.88 m in air). A 15 ps/nm chirped fiber Bragg grating and a circulator are used for a shorter ring cavity configuration. A linewidth of 0.1 nm and tuning range of 42 nm are obtained under the mode-locking condition. Various types of wavenumber (or wavelength) tunings can be implemented because of the filterless cavity configuration. Therefore, we successfully demonstrate a linearly wavenumber-swept AML fiber laser with 26.5 mW of output power for obtaining in-vivo OCT images at a sweep rate of 100 kHz.
Optics Express | 2011
Myeong Jin Ju; Sang Jin Lee; Yuri Kim; Jun Geun Shin; Hae Yeon Kim; Yiheng Lim; Yoshiaki Yasuno; Byeong Ha Lee
We present an integrated optical system that consists of optical coherence tomography (OCT) and laser-induced fluorescence (LIF) spectroscopy for multimodal analysis of pearls and pearl treatments. The OCT source and the LIF excitation beams were aligned together to illuminate the same spot of a pearl fixed on the sample stage that was under rotation. As a result, both OCT images and LIF spectra of the pearls were detected at the same time and also at the same place. For OCT, a 1310 nm-centered swept laser source was used. For LIF, a 405 nm laser diode was used and a lensed multimode fiber was utilized as a fluorescence probe. The tomographic investigation on the internal structure of a pearl allowed us to evaluate and categorize the pearl nondestructively as was previously reported. In addition, the measurements of fluorescence spectrum and its decaying rate helped to determine the species of mother oyster. The proposed multimodal analysis made it possible to classify the pearls and also to disclose the treatments made on the pearls.
Optics Express | 2011
Woo June Choi; Sung Pyo Jung; Jun Geun Shin; Danning Yang; Byeong Ha Lee
Chemical mechanical polishing (CMP) is a key process for global planarization of silicon wafers for semiconductors and AlTiC wafers for magnetic heads. Removal rate of wafer material is directly dependent on the surface roughness of a CMP pad, thus the structure of the pad surface has been evaluated with variable techniques. However, under in situ CMP process, the measurements have been severely limited due to the existence of polishing fluids including the slurry on the pad surface. In here, we newly introduce ultra-high resolution full-field optical coherence tomography (FF-OCT) to investigate the surface of wet pads. With FF-OCT, the wet pad surface could be quantitatively characterized in terms of the polishing pad lifetime, and also be three-dimensionally visualized. We found that reasonable polishing span could be evaluated from the surface roughness measurement and the groove depth measurement made by FF-OCT.
Optics Letters | 2011
Eun Jung Min; Jun Geun Shin; Yuri Kim; Byeong Ha Lee
We propose the two-dimensional scanning probe operating with a single actuator, which is thought useful as a sample probe for optical coherence tomography (OCT). The probe was designed to use a single-body lensed fiber cantilever loaded with an iron-bead and driven by a single-solenoid actuator. Elliptic spiral trace patterns were achieved using off-axis magnetic fields of the solenoid. A three-dimensional OCT image was obtained for a scanning area of 3.8 mm × 3.4 mm at an acquisition speed of 16.7 s/V. Up to 27 Hz B-scan rate, the proposed probe worked well, and 1000 A-scans were made per each B-scan.
Journal of Biomedical Optics | 2014
Myeong Jin Ju; Jun Geun Shin; Sujin Hoshi; Yoshiaki Yasuno; Byeong Ha Lee; Shuo Tang; Tae Joong Eom
Abstract. In this study, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing polarization contrasts such as phase retardation and degree of polarization uniformity (DOPU) was used for visualizing human meibomian glands (MGs) and investigating morphological characteristics of them. Especially, with the help of the DOPU contrast, MGs were exclusively extracted from the volumetric OCT image. In vivo PS-OCT measurements were performed on the upper eyelids of different age groups. From these measurements, different age-dependent aspects of the MG structure were also observed. Based on these observations, it can be inferred that the PS-OCT system has the potential for clinical diagnosis and investigation of MG-related dry eye diseases like MG dysfunction (MGD) and acinar atrophy.
Ocular Surface | 2017
Young-Sik Yoo; Kyung-Sun Na; Yong-Soo Byun; Jun Geun Shin; Byeong Ha Lee; Geunyoung Yoon; Tae Joong Eom; Choun-Ki Joo
PURPOSE To elucidate the anatomic details of gland dropout detected on two-dimensional infrared (IR) meibography in cases of dry eye associated with meibomian gland dysfunction (MGD) by using three-dimensional optical coherence tomography (OCT) meibography. METHODS In this cross-sectional, observational case series, we enrolled gland dropout detected on IR meibography; the condition was then examined using a real-time swept-source OCT system. Accordingly, a series of 500 raster B-scan OCT images, with the gland dropout site (observed on IR imaging) at the center, were obtained and rendered as three-dimensional volume images. The OCT images were classified based on the anatomic details, including acini and ducts, at the meibomian glands (Group I, constricted acini; II, atrophic acini; III, no acini). RESULTS The percentage of disagreement between IR and OCT images for dropout detected on IR imaging was 49.45% (43 and 93 cases in group I and II, respectively). Loss of the meibomian glands on both IR and OCT imaging (Group III) was observed in 50.55% cases (133 and 6 cases of gland dropout at the partial and whole eyelid on IR imaging, respectively). The proportion of disagreement between IR and OCT images (Group I and II) was higher in the middle area (63/119, 53.39%), as compared to that in the nasal (34/73, 46.58%) or temporal areas of the eyelid (26/65, 40%). CONCLUSIONS The loss of the meibomian glands, as observed on IR imaging, should be carefully interpreted, and OCT images may be useful to confirm the anatomic details of the meibomian glands.
Optics Letters | 2012
Eun Jung Min; Jun Geun Shin; Jae Hwi Lee; Yoshiaki Yasuno; Byeong Ha Lee
We present a full range handheld probe type spectral domain optical coherence tomography (SD-OCT) method. Here, the sample arm is composed of a tilted fiber-optic cantilever scanner; thus, the phase shift concurrently occurs while sample scanning. With the phase shift, we could achieve a full range complex-conjugate-free OCT image with no additional phase shifters in the reference arm. To realize this technique, a magnetically actuated probe was adopted. Full range SD-OCT images of a pearl, human fingernail, and human tooth were subsequently obtained using this suggested probe. The scanning range and acquisition speed were 3 mm and 20 frames/s, respectively.
Scientific Reports | 2018
Hwi Don Lee; Jun Geun Shin; Hoon Hyun; Bong-Ahn Yu; Tae Joong Eom
Tendons are tough, flexible, and ubiquitous tissues that connect muscle to bone. Tendon injuries are a common musculoskeletal injury, which affect 7% of all patients and are involved in up to 50% of sports-related injuries in the United States. Various imaging modalities are used to evaluate tendons, and both magnetic resonance imaging and sonography are used clinically to evaluate tendons with non-invasive and non-ionizing radiation. However, these modalities cannot provide 3-dimensional (3D) structural images and are limited by angle dependency. In addition, anisotropy is an artifact that is unique to the musculoskeletal system. Thus, great care should be taken during tendon imaging. The present study evaluated a functional photoacoustic microscopy system for in-vivo tendon imaging without labeling. Tendons have a higher density of type 1 collagen in a cross-linked triple-helical formation (65–80% dry-weight collagen and 1–2% elastin in a proteoglycan-water matrix) than other tissues, which provides clear endogenous absorption contrast in the near-infrared spectrum. Therefore, photoacoustic imaging with a high sensitivity to absorption contrast is a powerful tool for label-free imaging of tendons. A pulsed near-infrared fiber-based laser with a centered wavelength of 780 nm was used for the imaging, and this system successfully provided a 3D image of mouse tendons with a wide field of view (5 × 5 mm2).
Journal of Biomedical Optics | 2017
Jun Geun Shin; Ho Sik Hwang; Tae Joong Eom; Byeong Ha Lee
We have employed Fourier-domain optical coherence tomography (FD-OCT) to achieve corneal nerve imaging, which could be useful in surgical planning and refractive surgery. Because the three-dimensional (3-D) images of the corneal nerves were acquired in vivo, unintentional movement of the subject during the measurement led to imaging artifacts. These artifacts were compensated for with a series of signal processing techniques, namely realigning A-scan images to flatten the boundary and cross-correlating adjacent B-scan images. To overcome the undesirably large signal from scattering at the corneal surface and iris, volume rendering and maximum intensity projections were performed with only the data taken in the stromal region of the cornea, which is located between 200 and 500???m from the corneal surface. The 3-D volume imaging of a 10×10??mm2 area took 9.8 s, which is slightly shorter than the normal tear breakup time. This allowed us to image the branched and threadlike corneal nerve bundles within the human eye. The experimental results show that FD-OCT systems have the potential to be useful in clinical investigations of corneal nerves and by minimizing nerve injury during clinical or surgical procedures.