Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Hyoung Lee is active.

Publication


Featured researches published by Jun Hyoung Lee.


Nucleic Acids Research | 2008

Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli

Juyoung Lee; Bong Hyun Sung; Byung Jo Yu; Jun Hyoung Lee; Sang Hee Lee; Mi Sun Kim; Michael D. Koob; Sun Chang Kim

Now that many genomes have been sequenced and the products of newly identified genes have been annotated, the next goal is to engineer the desired phenotypes in organisms of interest. For the phenotypic engineering of microorganisms, we have developed novel artificial transcription factors (ATFs) capable of reprogramming innate gene expression circuits in Escherichia coli. These ATFs are composed of zinc finger (ZF) DNA-binding proteins, with distinct specificities, fused to an E. coli cyclic AMP receptor protein (CRP). By randomly assembling 40 different types of ZFs, we have constructed more than 6.4 × 104 ATFs that consist of 3 ZF DNA-binding domains and a CRP effector domain. Using these ATFs, we induced various phenotypic changes in E. coli and selected for industrially important traits, such as resistance to heat shock, osmotic pressure and cold shock. Genes associated with the heat-shock resistance phenotype were then characterized. These results and the general applicability of this platform clearly indicate that novel ATFs are powerful tools for the phenotypic engineering of microorganisms and can facilitate microbial functional genomic studies.


Nature Biotechnology | 2002

Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system.

Byung Jo Yu; Bong Hyun Sung; Michael D. Koob; Choong Hoon Lee; Jun Hyoung Lee; Won Sik Lee; Mi Sun Kim; Sun Chang Kim

An increasing number of microbial genomes have been completely sequenced, and functional analyses of these genomic sequences are under way. To facilitate these analyses, we have developed a genome-engineering tool for determining essential genes and minimizing bacterial genomes. We made two large pools of independent transposon mutants in Escherichia coli using modified Tn5 transposons with two different selection markers and precisely mapped the chromosomal location of 800 of these transposons. By combining a mapped transposon mutation from each of the mutant pools into the same chromosome using phage P1 transduction and then excising the flanked genomic segment by Cre-mediated loxP recombination, we obtained E. coli strains in which large genomic fragments (59–117 kilobases) were deleted. Some of these individual deletions were then combined into a single “cumulative deletion strain” that lacked 287 open reading frames (313.1 kilobases) but that nevertheless exhibited normal growth under standard laboratory conditions.


Microbial Cell Factories | 2009

Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production.

Jun Hyoung Lee; Bong Hyun Sung; Mi Sun Kim; Frederick R. Blattner; Byoung Hoon Yoon; Jung Hoe Kim; Sun Chang Kim

BackgroundDeletion of large blocks of nonessential genes that are not needed for metabolic pathways of interest can reduce the production of unwanted by-products, increase genome stability, and streamline metabolism without physiological compromise. Researchers have recently constructed a reduced-genome Escherichia coli strain MDS42 that lacks 14.3% of its chromosome.ResultsHere we describe the reengineering of the MDS42 genome to increase the production of the essential amino acid L-threonine. To this end, we over-expressed a feedback-resistant threonine operon (thrA*BC), deleted the genes that encode threonine dehydrogenase (tdh) and threonine transporters (tdcC and sstT), and introduced a mutant threonine exporter (rhtA23) in MDS42. The resulting strain, MDS-205, shows an ~83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type E. coli strain MG1655 engineered with the same threonine-specific modifications described above. And transcriptional analysis revealed the effect of the deletion of non-essential genes on the central metabolism and threonine pathways in MDS-205.ConclusionThis result demonstrates that the elimination of genes unnecessary for cell growth can increase the productivity of an industrial strain, most likely by reducing the metabolic burden and improving the metabolic efficiency of cells.


Nucleic Acids Research | 2008

Rapid and efficient construction of markerless deletions in the Escherichia coli genome

Byung Jo Yu; Kui Hyeon Kang; Jun Hyoung Lee; Bong Hyun Sung; Mi Sun Kim; Sun Chang Kim

We have developed an improved and rapid genomic engineering procedure for the construction of custom-designed microorganisms. This method, which can be performed in 2 days, permits restructuring of the Escherichia coli genome via markerless deletion of selected genomic regions. The deletion process was mediated by a special plasmid, pREDI, which carries two independent inducible promoters: (i) an arabinose-inducible promoter that drives expression of λ-Red recombination proteins, which carry out the replacement of a target genomic region with a marker-containing linear DNA cassette, and (ii) a rhamnose-inducible promoter that drives expression of I-SceI endonuclease, which stimulates deletion of the introduced marker by double-strand breakage-mediated intramolecular recombination. This genomic deletion was performed successively with only one plasmid, pREDI, simply by changing the carbon source in the bacterial growth medium from arabinose to rhamnose. The efficiencies of targeted region replacement and deletion of the inserted linear DNA cassette were nearly 70 and 100%, respectively. This rapid and efficient procedure can be adapted for use in generating a variety of genome modifications.


Plant and Cell Physiology | 2014

Two Ginseng UDP-Glycosyltransferases Synthesize Ginsenoside Rg3 and Rd

Suk-Chae Jung; Sung Chul Park; Jinkil Jeong; Myung Keun Park; Soohwan Lim; Yeon Ju Lee; Wan-Taek Im; Jun Hyoung Lee; Giltsu Choi; Sun Chang Kim

Ginseng is a medicinal herb that requires cultivation under shade conditions, typically for 4-6 years, before harvesting. The principal components of ginseng are ginsenosides, glycosylated tetracyclic terpenes. Dammarene-type ginsenosides are classified into two groups, protopanaxadiol (PPD) and protopanaxatriol (PPT), based on their hydroxylation patterns, and further diverge to diverse ginsenosides through differential glycosylation. Three early enzymes, dammarenediol-II synthase (DS) and two P450 enzymes, protopanaxadiol synthase (PPDS) and protopanaxatriol synthase (PPTS), have been reported, but glycosyltransferases that are necessary to synthesize specific ginsenosides have not yet been fully identified. To discover glycosyltransferases responsible for ginsenoside biosynthesis, we sequenced and assembled the ginseng transcriptome de novo and characterized two UDP-glycosyltransferases (PgUGTs): PgUGT74AE2 and PgUGT94Q2. PgUGT74AE2 transfers a glucose moiety from UDP-glucose (UDP-Glc) to the C3 hydroxyl groups of PPD and compound K to form Rh2 and F2, respectively, whereas PgUGT94Q2 transfers a glucose moiety from UDP-Glc to Rh2 and F2 to form Rg3 and Rd, respectively. Introduction of the two UGT genes into yeast together with PgDS and PgPPDS resulted in the de novo production of Rg3. Our results indicate that these two UGTs are key enzymes for the synthesis of ginsenosides and provide a method for producing specific ginsenosides through yeast fermentation.


Applied and Environmental Microbiology | 2013

Improved Production of L-Threonine in Escherichia coli by Use of a DNA Scaffold System

Jun Hyoung Lee; Suk-Chae Jung; Le Minh Bui; Kui Hyeon Kang; Ji-Joon Song; Sun Chang Kim

ABSTRACT Despite numerous approaches for the development of l-threonine-producing strains, strain development is still hampered by the intrinsic inefficiency of metabolic reactions caused by simple diffusion and random collisions of enzymes and metabolites. A scaffold system, which can promote the proximity of metabolic enzymes and increase the local concentration of intermediates, was reported to be one of the most promising solutions. Here, we report an improvement in l-threonine production in Escherichia coli using a DNA scaffold system, in which a zinc finger protein serves as an adapter for the site-specific binding of each enzyme involved in l-threonine production to a precisely ordered location on a DNA double helix to increase the proximity of enzymes and the local concentration of metabolites to maximize production. The optimized DNA scaffold system for l-threonine production significantly increased the efficiency of the threonine biosynthetic pathway in E. coli, substantially reducing the production time for l-threonine (by over 50%). In addition, this DNA scaffold system enhanced the growth rate of the host strain by reducing the intracellular concentration of toxic intermediates, such as homoserine. Our DNA scaffold system can be used as a platform technology for the construction and optimization of artificial metabolic pathways as well as for the production of many useful biomaterials.


Applied and Environmental Microbiology | 2006

Development of a biofilm production-deficient Escherichia coli strain as a host for biotechnological applications.

Bong Hyun Sung; Choong Hoon Lee; Byung Jo Yu; Jun Hyoung Lee; Juyoung Lee; Mi Sun Kim; Frederick R. Blattner; Sun Chang Kim

ABSTRACT Bacteria form biofilms by adhering to biotic or abiotic surfaces. This phenomenon causes several problems, including a reduction in the transport of mass and heat, an increase in resistance to antibiotics, and a shortening of the lifetimes of modules in bioindustrial fermentors. To overcome these difficulties, we created a biofilm production-deficient Escherichia coli strain, BD123, by deleting genes involved in curli biosynthesis and assembly, Δ(csgG-csgC); colanic acid biosynthesis and assembly, Δ(wcaL-wza); and type I pilus biosynthesis, Δ(fimB-fimH). E. coli BD123 remained mostly in the form of planktonic cells under the conditions tested and became more sensitive to the antibiotics streptomycin and rifampin than the wild-type E. coli MG1655: the growth of BD123 was inhibited by one-fourth of the concentrations needed to inhibit MG1655. In addition, the transformation efficiency of BD123 was about 20 times higher than that of MG1655, and the production and secretion of recombinant proteins were ∼16% and ∼25% greater, respectively, with BD123 than with MG1655. These results indicate that the newly created biofilm production-deficient strain of E. coli displays several key properties that substantially enhance its utility in the biotechnology arena.


Journal of Biotechnology | 2015

Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions

Le Minh Bui; Juyoung Lee; Almando Geraldi; Ziaur Rahman; Jun Hyoung Lee; Sun Chang Kim

As the increasing demand from both chemical and fuel markets, the interest in producing n-butanol using biological route has been rejuvenated to engineer an economical fermentation process, competing with the currently-dominant chemical synthesis. n-Butanol has been traditionally produced from the ABE fermentation of Clostridium acetobutylicum. This system, however, is not economically feasible due to its limited efficiency and the lack of genetic modification tools for further improvements. Alternatively, n-butanol synthesis pathway was successfully transferred into Escherichia coli and rapidly improved to reach a level of production comparable to the native producer. Nevertheless, the toxicity of n-butanol has become a common issue that either approach has to deal with. Previously, we reported our success in improving n-butanol tolerance in E. coli by engineering an Artificial Transcription Factor (ATF) that can modify the expression level of multiple targets simultaneously and improved the n-butanol tolerance of MG1655 strain to 1.5% (vol/vol) n-butanol. However, it was observed that some possible n-butanol tolerance mechanisms did not occurred upon the ATF expression, especially the membrane-related functions such as the homeoviscous adaptation, iron uptaking system, and efflux pump system. In this work, we attempted to enhance the n-butanol tolerance associated with the ATF by combining it with the membrane-related functions in E. coli, including the overexpression of fatty acid synthesis genes, iron-uptaking protein FeoA, and introducing a SrpABC efflux pump from Pseudomonas putida into E. coli. The synergistic effect of this combinatorial approach led to 4, 5, and 9-fold improved growths in the cultures containing 1, 1.5, and 2% (vol/vol) n-butanol, respectively, of an MG1655 knockout strain engineered for n-butanol production, and expanded the tolerance limit to 2% (vol/vol) n-butanol.


Archive | 2009

Escherichia coli Genome Engineering and Minimization forthe Construction of a Bioengine

Bong Hyun Sung; Jun Hyoung Lee; Sun Chang Kim

A profusion of diverse genome-related information has been obtained by the sequencing of genomes from many microorganisms, functional analyses of these genomes, and the application of bioinformatics techniques to genomics, proteomics, and systems biology. The resulting barrage of data coupled with large-scale gene inactivation studies have allowed researchers to produce a genetic blueprint for a streamline, custom-designed microbe that carries the minimal gene set required for the organism to replicate in a given environment. On the basis of this minimal genome information, several research groups have generated minimal-genome Escherichia coli strains using sophisticated genome engineering techniques, such as the dual transposition, site-specific recombinations, and markerless genome recombination. These minimal genomes display various desirable traits for biological researches, such as improved genome stability, increased transformation efficacy, and higher production of biological materials. Therefore, the generation of a large number of deletion mutants of the minimal E. coli genomes coupled with restructuring of regulatory circuits may lead to facilitate the construction of a variety of custom-designed bacterial strains (also called a “bioengine”) with myriad practical and commercial applications.


Methods of Molecular Biology | 2011

Scarless chromosomal gene knockout methods.

Bong Hyun Sung; Jun Hyoung Lee; Sun Chang Kim

An improved and rapid genomic engineering method has been developed for the construction of -custom-designed microorganisms by scarless chromosomal gene knockouts. This method, which can be performed in 2 days, permits restructuring of the Escherichia coli genome via scarless deletion of selected genomic regions. The deletion process is mediated by a special plasmid, pREDI, which carries two independent inducible promoters: (1) an arabinose-inducible promoter that drives expression of λ-RED recombination proteins, which carry out the replacement of a target genomic region with a marker-containing linear DNA cassette, and (2) a rhamnose-inducible promoter that drives expression of I-SceI endonuclease, which accomplishes deletion of the introduced marker by double-strand breakage - mediated intramolecular recombination. This genomic deletion is performed simply by changing the carbon source in the bacterial growth medium from arabinose to rhamnose. The efficiencies of targeted region replacement and deletion of the inserted linear DNA cassette are nearly 70 and 100%, respectively. This rapid and efficient procedure can be adapted for use in generating a variety of genome modifications.

Collaboration


Dive into the Jun Hyoung Lee's collaboration.

Top Co-Authors

Avatar

Bong Hyun Sung

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Choong Hoon Lee

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Frederick R. Blattner

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge