Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-ichi Karasawa is active.

Publication


Featured researches published by Jun-ichi Karasawa.


Brain Research | 2005

AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist

Jun-ichi Karasawa; Toshiharu Shimazaki; Naoya Kawashima; Shigeyuki Chaki

(1R,2R,3R,5R,6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039), a selective group II metabotropic glutamate receptor (mGluR) antagonist, exhibits antidepressant-like activities in rodent models. In the present studies, to clarify the involvement of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in exhibition of the antidepressant-like properties of MGS0039, we examined the effect of an AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), on the antidepressant-like effect of MGS0039 in the mouse tail suspension test. We also examined the effects of NBQX on increased serotonin release after treatment with MGS0039 in the rat medial prefrontal cortex (mPFC) using in vivo microdialysis evaluation. In the tail suspension test, MGS0039 (0.3-3 mg/kg, i.p.) treatment dose-dependently and significantly reduced immobility time. Pretreatment with NBQX (10 mg/kg, s.c.) significantly prevented the antidepressant-like effect of MGS0039 in the tail suspension test, while NBQX itself had no effect on immobility time. In the microdialysis evaluation, administration of MGS0039 (10 mg/kg, i.p.) significantly increased serotonin levels in mPFC in freely moving rats, while NBQX (1 mg/kg, i.p.) itself had no effect on serotonin release in this region. Pretreatment with NBQX significantly attenuated the increase in serotonin release by MGS0039. These findings suggest that stimulation of postsynaptic AMPA receptors plays a role in mediating the pharmacological effects of MGS0039.


Neuroscience Letters | 2006

A metabotropic glutamate 2/3 receptor antagonist, MGS0039, increases extracellular dopamine levels in the nucleus accumbens shell.

Jun-ichi Karasawa; Takao Yoshimizu; Shigeyuki Chaki

(1R,2R,3R,5R,6R)-2-Amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (MGS0039), a potent and selective metabotropic glutamate 2/3 (mGlu 2/3) receptor antagonist, exhibits antidepressant-like activities in some animal models. In the present study, we examined the effect of MGS0039 on extracellular dopamine levels in the rat nucleus accumbens (NAc) shell using in vivo microdialysis evaluation because accumbal dopamine has been implicated in depression. Local application of MGS0039 into the NAc shell at 10 microM significantly increased extracellular dopamine levels in the NAc shell in freely moving rats. In contrast, local application of 10 microM of LY354740, an mGlu 2/3 receptor agonist, significantly decreased extracellular dopamine levels in the same brain region. These findings suggest that dopamine release in the NAc shell is regulated by mGlu 2/3 receptors, and that the effect on dopamine levels in the NAc shell may partially explain the antidepressant-like properties of mGlu 2/3 receptor antagonists.


Neuroscience Letters | 2005

Neuropharmacological profiles of antagonists of group II metabotropic glutamate receptors

Naoya Kawashima; Jun-ichi Karasawa; Toshiharu Shimazaki; Shigeyuki Chaki; Shigeru Okuyama; Akito Yasuhara; Atsuro Nakazato

Glutamatergic abnormalities play roles in several psychiatric disorders. Glutamate acts at two classes of receptors, ionotropic and metabotropic glutamate receptors (mGluR), the latter is classified into three group, based on receptor homology and signaling mechanisms. Among them, recent pharmacological and histochemical studies suggest that the group II mGluR (mGluR2 and mGluR3) plays crucial roles in the control of emotional states. We previously reported that MGS0039, a selective group II mGluR antagonist, exhibited dose-dependent antidepressant-like effects in some animal models. However, the mechanism by which group II mGluR antagonists exhibit such effects is still unclear. In the present two studies, we examined neuropharmacological effects of group II mGluR antagonists on monoaminergic neurons. In an electrophysiological study, MGS0039 dose-dependently and significantly increased the firing rate of dorsal raphe nucleus (DRN) serotonergic neurons. LY341495, another group II mGluR antagonist, also increased DRN serotonergic neural activity significantly. Consistent with the findings of this electrophysiological study, MGS0039 significantly increased extracellular level of serotonin in rat medial prefrontal cortex in a microdialysis study. In contrast, MGS0039 had no effect on the activity of locus coeruleus noradrenergic neurons. These findings suggest that modulation of serotonergic neuron might be, at least in part, responsible for the antidepressant-like effects of group II mGluR antagonists.


Journal of Pharmacology and Experimental Therapeutics | 2014

Neurophysiologic and Antipsychotic Profiles of TASP0433864, a Novel Positive Allosteric Modulator of Metabotropic Glutamate 2 Receptor

Tetsuaki Hiyoshi; Toshiyuki Marumo; Hirohiko Hikichi; Yasumitsu Tomishima; Hiroki Urabe; Tomoko Tamita; Izumi Iida; Akito Yasuhara; Jun-ichi Karasawa; Shigeyuki Chaki

Excess glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, and the activation of metabotropic glutamate 2 (mGlu2) receptor may exert antipsychotic effects by normalizing glutamate transmission. In the present study, we investigated the neurophysiologic and antipsychotic profiles of TASP0433864 [(2S)-2-[(4-tert-butylphenoxy)methyl]-5-methyl-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide], a newly synthesized positive allosteric modulator (PAM) of mGlu2 receptor. TASP0433864 exhibited PAM activity at human and rat mGlu2 receptors with EC50 values of 199 and 206 nM, respectively, without exerting agonist activity at rat mGlu2 receptor. TASP0433864 produced a leftward and upward shift in the concentration-response curve of glutamate-increased guanosine 5′-O-(3-[35S]thio)triphosphate binding to mGlu2 receptor. In contrast, TASP0433864 had negligible activities for other mGlu receptors, including mGlu3 receptor, and did not have any affinity for other receptors or transporters. In hippocampal slices, TASP0433864 potentiated an inhibitory effect of DCG-IV [(2S,2′R,3′R)-2-(2′,3′-dicarboxylcyclopropyl)glycine], a mGlu2/3 receptor agonist, on the field excitatory postsynaptic potentials in the dentate gyrus, indicating that TASP0433864 potentiates the mGlu2 receptor–mediated presynaptic inhibition of glutamate release. Moreover, TASP0433864 inhibited both MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]- and ketamine-increased cortical γ band oscillation in the rat cortical electroencephalogram, which have been considered to reflect the excess activation of cortical pyramidal neurons. The inhibitory effect of TASP0433864 on cortical activation was also observed in the mouse 2-deoxy-glucose uptake study. In a behavioral study, TASP0433864 significantly inhibited both ketamine- and methamphetamine-increased locomotor activities in mice and rats, respectively. Collectively, these findings indicate that TASP0433864 is a selective mGlu2 receptor PAM with antipsychotic activity, and the attenuation of excess glutamatergic neurotransmission may be involved in the action of TASP0433864.


Neuroscience | 2014

Involvement of glutamatergic and GABAergic transmission in MK-801-increased gamma band oscillation power in rat cortical electroencephalograms

Tetsuaki Hiyoshi; Daiji Kambe; Jun-ichi Karasawa; Shigeyuki Chaki

Hypofunction of the N-methyl-D-aspartic acid receptor (NMDAr) has been considered to play a crucial role in the pathophysiology of schizophrenia. In rodent electroencephalogram (EEG) studies, non-competitive NMDAr antagonists have been reported to produce aberrant basal gamma band oscillation (GBO), as observed in schizophrenia. Aberrations in GBO power have attracted attention as a translational biomarker for the development of novel antipsychotic drugs. However, the neuronal mechanisms as well as the pharmacological significance of NMDAr antagonist-induced aberrant GBO power have not been fully investigated. In the present study, to address the above questions, we examined the pharmacological properties of MK-801 (0.1 mg/kg)-increased basal GBO power in rat cortical EEG. Riluzole (3-10 mg/kg), a glutamate release inhibitor, reduced the MK-801-increased basal GBO power. In contrast, L-838,417 (1-3 mg/kg), an α2/3/5 subunit-selective GABAA receptor-positive allosteric modulator, enhanced the GBO increase. Antipsychotics such as haloperidol (0.05-0.3 mg/kg) and clozapine (1-10 mg/kg) dose-dependently attenuated the MK-801-increased GBO power. Likewise, LY379268 (0.3-3 mg/kg), an metabotropic glutamate 2/3 receptor (mGlu2/3 receptor) agonist, reduced the GBO increase in a dose-dependent manner, which was antagonized by an mGlu2/3 receptor antagonist LY341495. These results suggest that an increase in cortical GBO power induced by NMDAr hypofunction can be attributed to the aberrant activities of both excitatory pyramidal neurons and inhibitory interneurons in local circuits. The aberrant cortical GBO power reflecting cortical network dysfunction observed in schizophrenia might be a useful biomarker for the discovery of novel antipsychotic drugs.


Neurochemistry International | 2010

AMPA receptor mediates mGlu 2/3 receptor antagonist-induced dopamine release in the rat nucleus accumbens shell.

Jun-ichi Karasawa; Makiko Kotani; Daiji Kambe; Shigeyuki Chaki

The role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation in the regulation of dopamine release by the metabotropic glutamate (mGlu) 2/3 receptors in the nucleus accumbens (NAc) shell was investigated using an in vivo microdialysis evaluation. The local application of 10 microM of LY341495, an mGlu 2/3 receptor antagonist, significantly increased extracellular dopamine levels in the NAc shell in freely moving rats. Pretreatment with an AMPA receptor antagonist, NBQX (0.3 mg/kg, i.p.) significantly attenuated the increase in dopamine release induced by LY341495 application to the basal level, while the systemic administration of NBQX alone had no effect on dopamine release in this region of the brain. Moreover, the local application of an AMPA receptor potentiator, CX546, at 100 or 300 microM also enhanced dopamine release in the NAc shell in a concentration-dependent manner. These findings suggest that the activation of the postsynaptic AMPA receptor plays a role in mediating the regulation of dopamine release by the mGlu 2/3 receptor in the NAc shell.


Neuroscience Letters | 2014

Metabotropic glutamate receptors regulate cortical gamma hyperactivities elicited by ketamine in rats

Tetsuaki Hiyoshi; Hirohiko Hikichi; Jun-ichi Karasawa; Shigeyuki Chaki

Abnormalities in electroencephalogram gamma oscillations have been implicated in schizophrenic symptoms. N-methyl-d-aspartate (NMDA) receptor antagonists produce behavioral abnormalities that are similar to the symptoms of schizophrenia, including social and cognitive impairment, and also increase the power of spontaneous gamma oscillations in the frontal cortex in rodents. Both mGlu2/3 receptor agonists and mGlu1 receptor antagonists reportedly improve behavioral abnormalities elicited by NMDA receptor antagonists in rodents. The present study evaluated the effects of an mGlu2/3 receptor agonist and an mGlu1 receptor antagonist on aberrant basal gamma oscillations elicited by an NMDA receptor antagonist, ketamine, in the rat frontal cortex. Ketamine increased spontaneous cortical gamma oscillations. Pretreatment with an mGlu2/3 receptor agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), or an mGlu1 receptor antagonist, (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone (JNJ16259685), reduced the ketamine-induced basal gamma hyperactivity. These findings indicate that the stimulation of mGlu2/3 receptors and the inhibition of mGlu1 receptors reverse aberrant gamma oscillations, and these effects may partially explain the antipsychotic-like properties of mGlu2/3 receptor agonists and mGlu1 receptor antagonists.


Behavioural Brain Research | 2014

Stimulation of postsynapse adrenergic α2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder

Kazuaki Kawaura; Jun-ichi Karasawa; Shigeyuki Chaki; Hirohiko Hikichi

A 5-trial inhibitory avoidance test using spontaneously hypertensive rat (SHR) pups has been used as an animal model of attention deficit hyperactivity disorder (ADHD). However, the roles of noradrenergic systems, which are involved in the pathophysiology of ADHD, have not been investigated in this model. In the present study, the effects of adrenergic α2 receptor stimulation, which has been an effective treatment for ADHD, on attention/cognition performance were investigated in this model. Moreover, neuronal mechanisms mediated through adrenergic α2 receptors were investigated. We evaluated the effects of both clonidine, a non-selective adrenergic α2 receptor agonist, and guanfacine, a selective adrenergic α2A receptor agonist, using a 5-trial inhibitory avoidance test with SHR pups. Juvenile SHR exhibited a shorter transfer latency, compared with juvenile Wistar Kyoto (WKY) rats. Both clonidine and guanfacine significantly prolonged the transfer latency of juvenile SHR. The effects of clonidine and guanfacine were significantly blocked by pretreatment with an adrenergic α2A receptor antagonist. In contrast, the effect of clonidine was not attenuated by pretreatment with an adrenergic α2B receptor antagonist, or an adrenergic α2C receptor antagonist, while it was attenuated by a non-selective adrenergic α2 receptor antagonist. Furthermore, the effects of neither clonidine nor guanfacine were blocked by pretreatment with a selective noradrenergic neurotoxin. These results suggest that the stimulation of the adrenergic α2A receptor improves the attention/cognition performance of juvenile SHR in the 5-trial inhibitory avoidance test and that postsynaptic, rather than presynaptic, adrenergic α2A receptor is involved in this effect.


Psychopharmacology | 2015

Efficacy of a glycine transporter 1 inhibitor TASP0315003 in animal models of cognitive dysfunction and negative symptoms of schizophrenia

Shigeyuki Chaki; Toshiharu Shimazaki; Jun-ichi Karasawa; Takeshi Aoki; Ayaka Kaku; Michihiko Iijima; Daiji Kambe; Shuji Yamamoto; Yasunori Kawakita; Tsuyoshi Shibata; Kumi Abe; Taketoshi Okubo; Yoshinori Sekiguchi; Shigeru Okuyama

RationaleSince the hypofunction of the N-methyl-D-aspartate (NMDA) receptor is known to be involved in the pathophysiology of schizophrenia, the enhancement of NMDA receptor function through glycine modulatory sites is expected to be a useful approach for the treatment of schizophrenia.ObjectivesWe investigated the efficacy of a glycine transporter 1 (GlyT1) inhibitor that potentiates NMDA receptor function by increasing synaptic glycine levels in animal models for cognitive dysfunction and negative symptoms, both of which are poorly managed by current antipsychotics.ResultsA newly synthesized GlyT1 inhibitor, 3-chloro-N-{(S)-[3-(1-ethyl-1H-pyrazol-4-yl)phenyl][(2S)-piperidin-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide (TASP0315003) significantly improved cognitive deficit induced by MK-801 in the object recognition test in rats. Likewise, TASP0315003 significantly improved MK-801 impaired cognition in the social recognition test in rats and also enhanced social memory in treatment-naïve rats. In addition, repeated phencyclidine (PCP) treatment reduced the social interaction of paired mice, which may reflect negative symptoms such as social withdrawal, and both acute and sub-chronic treatment with TASP0315003 reversed the reduction in social interaction induced by PCP. Moreover, TASP0315003 additionally exhibited an antidepressant effect in the forced swimming test in rats. In contrast, TASP0315003 did not affect spontaneous locomotor activity or rotarod performance and did not induce catalepsy, indicating that TASP0315003 does not cause sedation or motor dysfunction, which is sometimes observed with the use of current antipsychotics.ConclusionsThese results suggest that GlyT1 inhibitors including TASP0315003 may be useful for the treatment of cognitive dysfunction and the negative symptoms of schizophrenia without having undesirable central nervous system side effects.


Pharmacological Reports | 2016

Stimulation of the metabotropic glutamate (mGlu) 2 receptor attenuates the MK-801-induced increase in the immobility time in the forced swimming test in rats

Kazuaki Kawaura; Jun-ichi Karasawa; Hirohiko Hikichi

BACKGROUND Negative symptoms of schizophrenia are poorly managed using the currently available antipsychotics. Previous studies indicate that agonists of the metabotropic glutamate (mGlu) 2/3 receptors may provide a novel approach for the treatment of schizophrenia. However, the effects of mGlu2/3 receptor agonists or mGlu2 receptor positive allosteric modulators have not yet been clearly elucidated in animal models of the negative symptoms of schizophrenia. Recently, we reported that the forced swimming test in rats treated with subchronic MK-801, an NMDA receptor antagonist, may be regarded as a useful test to evaluate the activities of drugs against the negative symptoms of schizophrenia. METHODS We evaluated the effects of LY379268, an mGlu2/3 receptor agonist, and BINA, an mGlu2 receptor positive allosteric modulator, on the hyperlocomotion induced by acute administration of MK-801 (0.15mg/kg, sc) and on the increase in the immobility time in the forced swimming test induced by subchronic treatment with MK-801 (0.5mg/kg, sc, twice a day for 7 days) in rats. RESULTS Both LY379268 (3mg/kg, sc) and BINA (100mg/kg, ip) attenuated the increase in the immobility time induced by subchronic treatment with MK-801 at the same doses at which they attenuated the MK-801-induced increase in locomotor activity, but had no effect on the immobility time in saline-treated rats. CONCLUSIONS The present results suggest that stimulation of the mGlu2 receptor attenuates the increase in the immobility time in the forced swimming test elicited by subchronic administration of MK-801, and may be potentially useful for treatment of the negative symptoms of schizophrenia.

Collaboration


Dive into the Jun-ichi Karasawa's collaboration.

Top Co-Authors

Avatar

Shigeyuki Chaki

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daiji Kambe

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayaka Kaku

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akito Yasuhara

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Kazuaki Kawaura

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Hiroki Urabe

Taisho Pharmaceutical Co.

View shared research outputs
Top Co-Authors

Avatar

Izumi Iida

Taisho Pharmaceutical Co.

View shared research outputs
Researchain Logo
Decentralizing Knowledge