Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-ichi Sakamaki is active.

Publication


Featured researches published by Jun-ichi Sakamaki.


Biochimica et Biophysica Acta | 2011

Regulation of FoxO transcription factors by acetylation and protein-protein interactions.

Hiroaki Daitoku; Jun-ichi Sakamaki; Akiyoshi Fukamizu

The forkhead box O transcription factors convert a variety of external stimuli, including growth factors, nutrients, and oxidative stress, into diverse biological responses through modulation of specific gene expression. Forkhead box O regulation is principally achieved by two distinct mechanisms: post-translational modifications and protein-protein interactions. Among several modifications of forkhead box O factors, we focus on reversible acetylation, describing past research and current advances. In the latter part of this review, we also provide an overview of forkhead box O-binding partners that control the transcriptional activity of forkhead box O factors. These two layers of regulation mostly overlap and thereby enable a more precise fine-tuning of forkhead box O functions involved in metabolism, longevity, and tumor suppression. This article is part of a Special Issue entitled: PI3K-AKT-FoxO axis in cancer and aging.


Journal of Biological Chemistry | 2008

A Combination of HNF-4 and Foxo1 Is Required for Reciprocal Transcriptional Regulation of Glucokinase and Glucose-6-phosphatase Genes in Response to Fasting and Feeding

Keiko Hirota; Jun-ichi Sakamaki; Junji Ishida; Yoko Shimamoto; Shigeki Nishihara; Norio Kodama; Kazuhide Ohta; Masayuki Yamamoto; Keiji Tanimoto; Akiyoshi Fukamizu

Glucokinase (GK) and glucose-6-phosphatase (G6Pase) regulate rate-limiting reactions in the physiologically opposed metabolic cascades, glycolysis and gluconeogenesis, respectively. Expression of these genes is conversely regulated in the liver in response to fasting and feeding. We explored the mechanism of transcriptional regulation of these genes by nutritional condition and found that reciprocal function of HNF-4 and Foxo1 plays an important role in this process. In the GK gene regulation, Foxo1 represses HNF-4-potentiated transcription of the gene, whereas it synergizes with HNF-4 in activating the G6Pase gene transcription. These opposite actions of Foxo1 concomitantly take place in the cells under no insulin stimulus, and such gene-specific action was promoter context-dependent. Interestingly, HNF-4-binding elements (HBEs) in the GK and G6Pase promoters were required both for the insulin-stimulated GK gene activation and insulin-mediated G6Pase gene repression. Indeed, mouse in vivo imaging showed that mutating the HBEs in the GK and G6Pase promoters significantly impaired their reactivity to the nutritional states, even in the presence of intact Foxo1-binding sites (insulin response sequences). Thus, in the physiological response of the GK and G6Pase genes to fasting/feeding conditions, Foxo1 distinctly decodes the promoter context of these genes and differently modulates the function of HBE, which then leads to opposite outcomes of gene transcription.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Arginine methylation of BCL-2 antagonist of cell death (BAD) counteracts its phosphorylation and inactivation by Akt

Jun-ichi Sakamaki; Hiroaki Daitoku; Katsuya Ueno; Ayano Hagiwara; Kazuyuki Yamagata; Akiyoshi Fukamizu

Protein arginine methylation is a common posttranslational modification catalyzed by a family of the protein arginine methyltransferases (PRMTs). We have previously reported that PRMT1 methylates Forkhead box O transcription factors at two arginine residues within an Akt consensus phosphorylation motif (RxRxxS/T), and that this methylation blocks Akt-mediated phosphorylation of the transcription factors. These findings led us to hypothesize that the functional crosstalk between arginine methylation and phosphorylation could be extended to other Akt target proteins as well as Forkhead box O proteins. Here we identify BCL-2 antagonist of cell death (BAD) as an additional substrate for PRMT1 among several Akt target proteins. We show that PRMT1 specifically binds and methylates BAD at Arg-94 and Arg-96, both of which comprise the Akt consensus phosphorylation motif. Consistent with the hypothesis, PRMT1-mediated methylation of these two arginine residues inhibits Akt-mediated phosphorylation of BAD at Ser-99 in vitro and in vivo. We also demonstrate that the complex formation of BAD with 14-3-3 proteins, which occurs subsequent to Akt-mediated phosphorylation, is negatively regulated by PRMT1. Furthermore, PRMT1 knockdown prevents mitochondrial localization of BAD and its binding to the antiapoptotic BCL-XL protein. BAD overexpression causes an increase in apoptosis with concomitant activation of caspase-3, whereas PRMT1 knockdown significantly suppresses these apoptotic processes. Taken together, our results add a new dimension to the complexity of posttranslational BAD regulation and provide evidence that arginine methylation within an Akt consensus phosphorylation motif functions as an inhibitory modification against Akt-dependent survival signaling.


Biochemical and Biophysical Research Communications | 2009

Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1

Jun-ichi Sakamaki; Hiroaki Daitoku; Kenji Yoshimochi; Masanao Miwa; Akiyoshi Fukamizu

Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27(Kip1) gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependent on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27(Kip1) gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27(Kip1) gene expression.


Nature Cell Biology | 2014

Role of the SIK2–p35–PJA2 complex in pancreatic β-cell functional compensation

Jun-ichi Sakamaki; Accalia Fu; Courtney Reeks; Stephen Baird; Chantal Depatie; Mufida Al Azzabi; Nabeel Bardeesy; Anne-Claude Gingras; Siu-Pok Yee; Robert A. Screaton

Energy sensing by the AMP-activated protein kinase (AMPK) is of fundamental importance in cell biology. In the pancreatic β-cell, AMPK is a central regulator of insulin secretion. The capacity of the β-cell to increase insulin output is a critical compensatory mechanism in prediabetes, yet its molecular underpinnings are unclear. Here we delineate a complex consisting of the AMPK-related kinase SIK2, the CDK5 activator CDK5R1 (also known as p35) and the E3 ligase PJA2 essential for β-cell functional compensation. Following glucose stimulation, SIK2 phosphorylates p35 at Serxa091, to trigger its ubiquitylation by PJA2 and promote insulin secretion. Furthermore, SIK2 accumulates in β-cells in models of metabolic syndrome to permit compensatory secretion; in contrast, β-cell knockout of SIK2 leads to accumulation of p35 and impaired secretion. This work demonstrates that the SIK2–p35–PJA2 complex is essential for glucose homeostasis and provides a link between p35–CDK5 and the AMPK family in excitable cells.


Molecular Cell | 2017

Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function

Jun-ichi Sakamaki; Simon Wilkinson; Marcel Hahn; Nilgun Tasdemir; Jim O’Prey; William Clark; Ann Hedley; Colin Nixon; Jaclyn S. Long; Maria New; Tim Van Acker; Sharon A. Tooze; Scott W. Lowe; Ivan Dikic; Kevin M. Ryan

Summary Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation.


Journal of Receptors and Signal Transduction | 2012

GSK3β regulates gluconeogenic gene expression through HNF4α and FOXO1

Jun-ichi Sakamaki; Hiroaki Daitoku; Yuta Kaneko; Ayano Hagiwara; Katsuya Ueno; Akiyoshi Fukamizu

Hepatic gluconeogenesis is important for the maintenance of blood glucose homeostasis under fasting condition. Hepatocyte nuclear factor 4α (HNF4α) and FOXO1 transcription factors have implicated in this process through transcriptional regulation of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), which are rate-limiting enzymes in gluconeogenesis. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates the expression of gluconeogenic genes through HNF4α and FOXO1. Silencing of GSK3β leads to reduction in the expression of gluconeogenic genes, including G6Pase, PEPCK, and peroxisome proliferator-activated receptor γ coactivator-1α. We show that GSK3β directly binds to both HNF4α and FOXO1. Inhibition of GSK3 by SB-216763 abolishes HNF4α-mediated activation of G6Pase promoter. We also found that overexpression of GSK3β potentiates G6Pase promoter activation by FOXO1 in a manner dependent on its kinase activity. Treatment of SB-216763 diminishes FOXO1-mediated activation of G6Pase promoter. Taken together, these results reveal a previously unrecognized mechanism for the regulation of gluconeogenic gene expression.


Frontiers in Oncology | 2017

Molecular Pathways Controlling Autophagy in Pancreatic Cancer

Maria New; Tim Van Acker; Jaclyn S. Long; Jun-ichi Sakamaki; Kevin M. Ryan; Sharon A. Tooze

Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell’s homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues.


Methods in Enzymology | 2017

Application of CRISPR/Cas9 to Autophagy Research

Jim O’Prey; Jun-ichi Sakamaki; Alice D. Baudot; Maria New; T. Van Acker; Sharon A. Tooze; Jaclyn S. Long; Kevin M. Ryan

The ability to efficiently modulate autophagy activity is paramount in the study of the field. Conventional broad-range autophagy inhibitors and genetic manipulation using RNA interference (RNAi), although widely used in autophagy research, are often limited in specificity or efficacy. In this chapter, we address the problems of conventional autophagy-modulating tools by exploring the use of three different CRISPR/Cas9 systems to abrogate autophagy in numerous human and mouse cell lines. The first system generates cell lines constitutively deleted of ATG5 or ATG7 whereas the second and third systems express a Tet-On inducible-Cas9 that enables regulated deletion of ATG5 or ATG7. We observed the efficiency of autophagy inhibition using the CRISPR/Cas9 strategy to surpass that of RNAi, and successfully generated cells with complete and sustained autophagy disruption through the CRISPR/Cas9 technology.


Transcription | 2018

Emerging roles of transcriptional programs in autophagy regulation

Jun-ichi Sakamaki; Jaclyn S. Long; Maria New; Tim Van Acker; Sharon A. Tooze; Kevin M. Ryan

ABSTRACT Autophagy is an essential cellular process that degrades cytoplasmic organelles and components. Precise control of autophagic activity is achieved by context-dependent signaling pathways. Recent studies have highlighted the involvement of transcriptional programs during autophagic responses to various signals. Here, we summarize the current understanding of the transcriptional regulation of autophagy.

Collaboration


Dive into the Jun-ichi Sakamaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria New

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge