Jun-ichi Takino
Hokuriku University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jun-ichi Takino.
Current Drug Targets | 2010
Masayoshi Takeuchi; Jun-ichi Takino; Sho-ichi Yamagishi
Diabetic vascular complications are leading causes of acquired blindness, end-stage renal failure, a variety of neuropathies, and accelerated atherosclerosis, which may be involved in the disabilities and high mortality rates suffered by diabetic patients. Continuous hyperglycemia is involved in the pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways, and numerous hyperglycemia-induced metabolic and hemodynamic conditions exist, including increased generation of various types of advanced glycation end-products (AGEs). Recently, we demonstrated that glyceraldehyde-derived AGEs (Glycer-AGEs), the predominant components of toxic AGEs (TAGE), play an important role in the pathogenesis of angiopathy in diabetic patients. Moreover, a growing body of evidence suggests that the interaction of TAGE with the receptor for AGEs (RAGE) alters intracellular signaling, gene expression, and the release of pro-inflammatory molecules and elicits oxidative stress generation in numerous types of cells, all of which may contribute to the pathological changes observed in diabetic vascular complications. Therefore, the inhibition of TAGE formation, blockade of TAGE-RAGE interaction, and the suppression of RAGE expression or its downstream pathways are promising targets for therapeutic interventions against diabetic vascular complications. In this review, we discuss the pathophysiological role of the TAGE-RAGE-oxidative stress system and related therapeutic interventions for preventing the development and progression of diabetic vascular complications.
Journal of Oncology | 2010
Jun-ichi Takino; Sho-ichi Yamagishi; Masayoshi Takeuchi
The receptor for advanced glycation end-products (RAGEs) is associated with the malignancy of cancer. A recent study has suggested that glyceraldehyde-derived AGEs (Glycer-AGEs) enhanced the malignancy of melanoma cells, but glucose-derived AGEs did not. However, the effects of Glycer-AGEs on other cancer cells remain poorly understood, and the molecular mechanisms behind the above-mentioned effect have not been clarified. The present paper aimed to examine the effect of Glycer-AGEs on cultured lung cancer A549 cells. RAGE was expressed in A549 cells. Glycer-AGEs significantly attenuated cell proliferation. Furthermore, Glycer-AGEs enhanced the migration capacity of the cells by activating Rac1 via ROS and also increased their invasion capacity. We demonstrated that Glycer-AGEs enhanced the migration and invasion of A549 cells rather than their proliferation. These results suggest that Glycer-AGEs play a critical role in the malignancy of cancer rather than its proliferation and are potential targets for therapeutic intervention.
World Journal of Gastroenterology | 2012
Jun-ichi Takino; Sho-ichi Yamagishi; Masayoshi Takeuchi
AIM To investigate the effect of glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs) on hepatocellular carcinoma (HCC) cells. METHODS Two HCC cell lines (Hep3B and HepG2 cells) and human umbilical vein endothelial cells (HUVEC) were used. Cell viability was determined using the WST-8 assay. Western blotting, enzyme linked immunosorbent assay, and real-time reverse transcription-polymerase chain reactions were used to detect protein and mRNA. Angiogenesis was evaluated by assessing the proliferation, migration, and tube formation of HUVEC. RESULTS The receptor for AGEs (RAGE) protein was detected in Hep3B and HepG2 cells. HepG2 cells were not affected by the addition of Glycer-AGEs. Glycer-AGEs markedly increased vascular endothelial growth factor (VEGF) mRNA and protein expression, which is one of the most potent angiogenic factors. Compared with the control unglycated bovine serum albumin (BSA) treatment, VEGF mRNA expression levels induced by the Glycer-AGEs treatment were 1.00 ± 0.10 vs 1.92 ± 0.09 (P < 0.01). Similarly, protein expression levels induced by the Glycer-AGEs treatment were 1.63 ± 0.04 ng/mL vs 2.28 ± 0.17 ng/mL for the 24 h treatment and 3.36 ± 0.10 ng/mL vs 4.79 ± 0.31 ng/mL for the 48 h treatment, respectively (P < 0.01). Furthermore, compared with the effect of the control unglycated BSA-treated conditioned medium, the Glycer-AGEs-treated conditioned medium significantly increased the proliferation, migration, and tube formation of HUVEC, with values of 122.4% ± 9.0% vs 144.5% ± 11.3% for cell viability, 4.29 ± 1.53 vs 6.78 ± 1.84 for migration indices, and 71.0 ± 7.5 vs 112.4 ± 8.0 for the number of branching points, respectively (P < 0.01). CONCLUSION These results suggest that Glycer-AGEs-RAGE signaling enhances the angiogenic potential of HCC cells by upregulating VEGF expression.
Laboratory Investigation | 2010
Masayoshi Takeuchi; Mina Iwaki; Jun-ichi Takino; Hikari Shirai; Mihoko Kawakami; Richard Bucala; Sho-ichi Yamagishi
The advanced stage of non-enzymatic glycation (also called the Maillard reaction) that leads to the formation of advanced glycation end-products (AGEs) has an important function in the pathogenesis of angiopathy in diabetic patients. So far, most studies have been focused on the Maillard reaction by glucose. Although an elevated level of glucose had been thought to have a primary function in the Maillard reaction, on a molecular basis, glucose is among the least reactive sugars within biological systems. In addition to the extracellular formation of AGEs, rapid intracellular AGEs formation by various intracellular precursors (fructose, trioses, and dicarbonyl compounds) has recently attached attention. In this study, we considered the Maillard reaction with particular attention to the potential function of fructose. Fructose AGE-modified serum albumins were prepared by incubation of rabbit or bovine serum albumin (RSA or BSA) with D-fructose. After immunization of rabbits, fructose-derived AGEs (Fru-AGE) antiserum was subjected to affinity chromatography on a Sepharose 4B column coupled with Fru-AGE-BSA. Characterization of the novel anti-Fru-AGE antibody was performed with a competitive enzyme-linked immunosorbent assay and immunoblot analysis. The assay of Fru-AGE was established using the immunoaffinity-purified-specific antibody, and the presence of Fru-AGE in healthy and diabetic serum was shown (7.04±4.47 vs 29.13±18.08 U/ml). We also investigated whether high glucose treatment could stimulate intracellular Fru-AGE production in cultured pericytes, and we analyzed the amount of Fru-AGE contained in some common commercial beverages and condiments. It is possible that Fru-AGE formation by these endogenous and exogenous routes contributes importantly to the tissue pathology of diabetes and aging. This paper provides novel and clinically relevant information on the detection of Fru-AGE between fructose and proteins.
Journal of Stroke & Cerebrovascular Diseases | 2012
Yoshimasa Niiya; Takeo Abumiya; Sho-ichi Yamagishi; Jun-ichi Takino; Masayoshi Takeuchi
BACKGROUND Advanced glycation end products (AGEs) have been implicated as important factors in the pathogenesis of diabetic vascular complication. The aim of this study is to reveal the effect of AGEs on permeability of brain microvascular endothelial cells (BMECs) in order to assess its role in diabetic vascular complications. METHODS Permeability was determined by the flux of fluorescein isothiocyanate (FITC)-labeled dextran (4-kDa molecular weight) through endothelial cell monolayers on a transwell system and was compared between bovine BMECs (BBMECs) and bovine aortic endothelial cells (BAECs). The effect of AGEs on permeability was investigated in terms of the role of vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS). RESULTS Permeability and VEGF expression were significantly increased by the addition of 100 μg/mL of glycer-AGEs in BBMECs. They also tended to be increased in BAECs, but not enough to make a significant difference. Simultaneous treatment with an anti-VEGF antibody suppressed the AGE-enhanced permeability. Furthermore, simultaneous treatment with a free radical scavenger, edaravone, also suppressed the AGE-enhanced permeability and the increase in VEGF mRNA levels and AGE-induced intracellular ROS overproduction. CONCLUSIONS These results suggest that BMECs are more susceptible than aortic endothelial cells to AGE-enhanced permeability and that AGE-enhanced permeability is dependent on VEGF expression induced by ROS over production.
Journal of Gastroenterology | 2010
Jun-ichi Takino; Yuka Kobayashi; Masayoshi Takeuchi
BackgroundNonalcoholic steatohepatitis (NASH) is a feature of metabolic syndrome. Advanced glycation end-products (AGEs) are formed by the Maillard reaction, which contributes to aging and to certain pathological complications of diabetes. A recent study has suggested that glyceraldehyde-derived AGEs (Glycer-AGEs) are elevated in the sera of patients with NASH. Furthermore, immunohistochemistry of Glycer-AGEs showed intense staining in the livers of patients with NASH. The present study aimed to examine the effect of intracellular Glycer-AGEs on hepatocellular carcinoma (Hep3B) cells.MethodsCell viability was determined by the WST-1 assay. The slot blot and Western blot were used to detect intracellular Glycer-AGEs, and their localization was analyzed by confocal microscopy. Real-time reverse transcription-polymerase chain reaction was used to quantify the mRNA for the acute phase reactant C-reactive protein (CRP).ResultsGlyceraldehyde (GA), which is the precursor of Glycer-AGEs, induced a concentration- and time-dependent increase in cell death, which was associated with an increase in intracellular Glycer-AGEs formation. Aminoguanidine (AG), which prevents AGEs formation, inhibited the formation of intracellular Glycer-AGEs and prevented cell death. Among the intracellular Glycer-AGEs that were formed, heat shock cognate 70 (Hsc70) was identified as a GA-modified protein, and its modification reduced the activity of Hsc70. Furthermore, intracellular Glycer-AGEs increased the CRP mRNA concentration.ConclusionsThese results suggest that intracellular Glycer-AGEs play important roles in promoting inflammation and hepatocellular death.
Journal of Ophthalmology | 2010
Masayoshi Takeuchi; Jun-ichi Takino; Sho-ichi Yamagishi
Diabetic complications are a leading cause of acquired blindness, end-stage renal failure, and accelerated atherosclerosis, which are associated with the disabilities and high mortality rates seen in diabetic patients. Continuous hyperglycemia is involved in the pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways, and numerous hyperglycemia-induced metabolic and hemodynamic conditions exist, including increased generation of various types of advanced glycation end-products (AGEs). Recently, we demonstrated that glyceraldehyde-derived AGEs, the predominant structure of toxic AGEs (TAGE), play an important role in the pathogenesis of angiopathy in diabetic patients. Moreover, recent evidence suggests that the interaction of TAGE with the receptor for AGEs (RAGE) elicits oxidative stress generation in numerous types of cells, all of which may contribute to the pathological changes observed in diabetic complications. In this paper, we discuss the pathophysiological role of the TAGE-RAGE system in the development and progression of diabetic retinopathy.
World Journal of Hepatology | 2014
Masayoshi Takeuchi; Jun-ichi Takino; Akiko Sakasai-Sakai; Takanobu Takata; Tadashi Ueda; Mikihiro Tsutsumi; Hideyuki Hyogo; Sho-ichi Yamagishi
Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease around the world. It includes a spectrum of conditions from simple steatosis to non-alcoholic steatohepatitis (NASH) and can lead to fibrosis, cirrhosis, liver failure, and/or hepatocellular carcinoma. NAFLD is also associated with other medical conditions such as obesity, diabetes mellitus (DM), metabolic syndrome, hypertension, insulin resistance, hyperlipidemia, and cardiovascular disease (CVD). In diabetes, chronic hyperglycemia contributes to the development of both macro- and microvascular conditions through a variety of metabolic pathways. Thus, it can cause a variety of metabolic and hemodynamic conditions, including upregulated advanced glycation end-products (AGEs) synthesis. In our previous study, the most abundant type of toxic AGEs (TAGE); i.e., glyceraldehyde-derived AGEs, were found to make a significant contribution to the pathogenesis of DM-induced angiopathy. Furthermore, accumulating evidence suggests that the binding of TAGE with their receptor (RAGE) induces oxidative damage, promotes inflammation, and causes changes in intracellular signaling and the expression levels of certain genes in various cell populations including hepatocytes and hepatic stellate cells. All of these effects could facilitate the pathogenesis of hypertension, cancer, diabetic vascular complications, CVD, dementia, and NASH. Thus, inhibiting TAGE synthesis, preventing TAGE from binding to RAGE, and downregulating RAGE expression and/or the expression of associated effector molecules all have potential as therapeutic strategies against NASH. Here, we examine the contributions of RAGE and TAGE to various conditions and novel treatments that target them in order to prevent the development and/or progression of NASH.
World Journal of Hepatology | 2015
Jun-ichi Takino; Kentaro Nagamine; Takamitsu Hori; Akiko Sakasai-Sakai; Masayoshi Takeuchi
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. The main etiologies of HCC are hepatitis B virus and hepatitis C virus (HCV), and non-hepatitis B/non-hepatitis C HCC (NBNC-HCC) has also been identified as an etiological factor. Although the incidence of HCV-related HCC in Japan has decreased slightly in recent years, that of NBNC-HCC has increased. The onset mechanism of NBNC-HCC, which has various etiologies, remains unclear; however, nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease, is known to be an important risk factor for NBNC-HCC. Among the different advanced glycation end-products (AGEs) formed by the Maillard reaction, glyceraldehyde-derived AGEs, the predominant components of toxic AGEs (TAGE), have been associated with NASH and NBNC-HCC, including NASH-related HCC. Furthermore, the expression of the receptor for AGEs (RAGE) has been correlated with the malignant progression of HCC. Therefore, TAGE induce oxidative stress by binding with RAGE may, in turn, lead to adverse effects, such as fibrosis and malignant transformation, in hepatic stellate cells and tumor cells during NASH or NASH-related HCC progression. The aim of this review was to examine the contribution of the TAGE-RAGE axis in NASH-related HCC.
Scientific Reports | 2015
Yoshiki Koriyama; Ayako Furukawa; Michiru Muramatsu; Jun-ichi Takino; Masayoshi Takeuchi
Clinical evidence has implicated diabetes mellitus as one of the risk factors for the development and progression of Alzheimer’s disease (AD). However, the neurotoxic pathway activated due to abnormalities in glucose metabolism has not yet been identified in AD. In order to investigate the relationship between impaired cerebral glucose metabolism and the pathophysiology of AD, SH-SY5Y human neuroblastoma cells were exposed to glyceraldehyde (GA), an inhibitor of glycolysis. GA induced the production of GA-derived advanced glycation end-products (GA-AGEs) and cell apoptosis, glycolytic inhibition, decreases in the medium concentrations of diagnostic markers of AD, such as amyloid β 1-42 (Aβ42), and increases in tau phosphorylation. These results suggest that the production of GA-AGEs and/or inhibition of glycolysis induce AD-like alterations, and this model may be useful for examining the pathophysiology of AD.