Jun-Jie Koh
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jun-Jie Koh.
Biochimica et Biophysica Acta | 2013
Jun-Jie Koh; Sheng-Xiang Qiu; Hanxun Zou; Rajamani Lakshminarayanan; Jianguo Li; Xiaojun Zhou; Charles Tang; Padmanabhan Saraswathi; Chandra Verma; Donald Tan; Ai Ling Tan; Shouping Liu; Roger W. Beuerman
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created the need for better therapeutic options. In this study, five natural xanthones were extracted and purified from the fruit hull of Garcinia mangostana and their antimicrobial properties were investigated. α-Mangostin was identified as the most potent among them against Gram-positive pathogens (MIC=0.78-1.56 μg/mL) which included two MRSA isolates. α-Mangostin also exhibited rapid in vitro bactericidal activity (3-log reduction within 5 min). In a multistep (20 passage) resistance selection study using a MRSA isolated from the eye, no resistance against α-mangostin in the strains tested was observed. Biophysical studies using fluorescence probes for membrane potential and permeability, calcein encapsulated large unilamellar vesicles and scanning electron microscopy showed that α-mangostin rapidly disrupted the integrity of the cytoplasmic membrane leading to loss of intracellular components in a concentration-dependent manner. Molecular dynamic simulations revealed that isoprenyl groups were important to reduce the free energy for the burial of the hydrophobic phenyl ring of α-mangostin into the lipid bilayer of the membrane resulting in membrane breakdown and increased permeability. Thus, we suggest that direct interactions of α-mangostin with the bacterial membrane are responsible for the rapid concentration-dependent membrane disruption and bactericidal action.
Journal of Medicinal Chemistry | 2015
Jun-Jie Koh; Shuimu Lin; Thet Tun Aung; Fanghui Lim; Hanxun Zou; Yang Bai; Jianguo Li; Huifen Lin; Li Mei Pang; Wee Luan Koh; Shuhaida Salleh; Rajamani Lakshminarayanan; Lei Zhou; Sheng-Xiang Qiu; Konstantin Pervushin; Chandra Verma; Donald Tan; Derong Cao; Shouping Liu; Roger W. Beuerman
Antibiotic resistance is a critical global health care crisis requiring urgent action to develop more effective antibiotics. Utilizing the hydrophobic scaffold of xanthone, we identified three components that mimicked the action of an antimicrobial cationic peptide to produce membrane-targeting antimicrobials. Compounds 5c and 6, which contain a hydrophobic xanthone core, lipophilic chains, and cationic amino acids, displayed very promising antimicrobial activity against multidrug-resistant Gram-positive bacteria, including MRSA and VRE, rapid time-kill, avoidance of antibiotic resistance, and low toxicity. The bacterial membrane selectivity of these molecules was comparable to that of several membrane-targeting antibiotics in clinical trials. 5c and 6 were effective in a mouse model of corneal infection by S. aureus and MRSA. Evidence is presented indicating that 5c and 6 target the negatively charged bacterial membrane via a combination of electrostatic and hydrophobic interactions. These results suggest that 5c and 6 have significant promise for combating life-threatening infections.
Frontiers in Neuroscience | 2017
Jianguo Li; Jun-Jie Koh; Shouping Liu; Rajamani Lakshminarayanan; Chandra Verma; Roger W. Beuerman
Antimicrobial peptides (AMPs) are promising next generation antibiotics that hold great potential for combating bacterial resistance. AMPs can be both bacteriostatic and bactericidal, induce rapid killing and display a lower propensity to develop resistance than do conventional antibiotics. Despite significant progress in the past 30 years, no peptide antibiotic has reached the clinic yet. Poor understanding of the action mechanisms and lack of rational design principles have been the two major obstacles that have slowed progress. Technological developments are now enabling multidisciplinary approaches including molecular dynamics simulations combined with biophysics and microbiology toward providing valuable insights into the interactions of AMPs with membranes at atomic level. This has led to increasingly robust models of the mechanisms of action of AMPs and has begun to contribute meaningfully toward the discovery of new AMPs. This review discusses the detailed action mechanisms that have been put forward, with detailed atomistic insights into how the AMPs interact with bacterial membranes. The review further discusses how this knowledge is exploited toward developing design principles for novel AMPs. Finally, the current status, associated challenges, and future directions for the development of AMP therapeutics are discussed.
Journal of Medicinal Chemistry | 2016
Jun-Jie Koh; Hanxun Zou; Shuimu Lin; Huifen Lin; Rui Ting Soh; Fang Hui Lim; Wee Luan Koh; Jianguo Li; Rajamani Lakshminarayanan; Chandra Verma; Donald Tan; Derong Cao; Roger W. Beuerman; Shouping Liu
We recently reported the bioinspired synthesis of a highly potent nonpeptidic xanthone, 2c (AM-0016), with potent antibacterial activity against MRSA. Herein, we report a thorough structure-activity relationship (SAR) analysis of a series of nonpeptidic amphiphilic xanthone derivatives in an attempt to identify more potent compounds with lower hemolytic activity and greater membrane selectivity. Forty-six amphiphilic xanthone derivatives were analyzed in this study and structurally classified into four groups based on spacer length, cationic moieties, lipophilic chains, and triarm functionalization. We evaluated and explored the effects of the structures on their membrane-targeting properties. The SAR analysis successfully identified 3a with potent MICs (1.56-3.125 μ/mL) and lower hemolytic activity (80.2 μg/mL for 3a versus 19.7 μg/mL for 2c). Compound 3a displayed a membrane selectivity of 25.7-50.4. Thus, 3a with improved HC50 value and promising selectivity could be used as a lead compound for further structural optimization for the treatment of MRSA infection.
Biochimica et Biophysica Acta | 2015
Jianguo Li; Shouping Liu; Jun-Jie Koh; Hanxun Zou; Rajamani Lakshminarayanan; Yang Bai; Konstantin Pervushin; Lei Zhou; Chandra Verma; Roger W. Beuerman
Membrane active antimicrobials are a promising new generation of antibiotics that hold the potential to avert antibiotic resistance. However, poor understanding of the action mechanism and the lack of general design principles have impeded their development. Here we extend the concept of fragment based drug design and propose a pharmacophore model based on first principles for the design of membrane active antimicrobials against Gram positive pathogens. Elaborating on a natural xanthone-based hydrophobic scaffold, two derivatives of the pharmacophore model are proposed, and these demonstrate excellent antimicrobial activity. Rigorous molecular dynamics simulations combined with biophysical experiments suggest a three-step mechanism of action (absorption-translocation-disruption) which allows us to identify key factors for the practical optimization of each fragment of the pharmacophore. Moreover, the model matches the structures of several membrane active antimicrobials which are currently in clinical trials. Our model provides a novel and rational approach for the design of bactericidal molecules that target the bacterial membrane.
Journal of Medicinal Chemistry | 2015
Jun-Jie Koh; Huifen Lin; Vonny Caroline; Yu Siang Chew; Li Mei Pang; Thet Tun Aung; Jianguo Li; Rajamani Lakshminarayanan; Donald Tan; Chandra Verma; Ai Ling Tan; Roger W. Beuerman; Shouping Liu
Treating infections caused by multidrug-resistant Gram-negative pathogens is challenging, and there is concern regarding the toxicity of the most effective antimicrobials for Gram-negative pathogens. We hypothesized that conjugating a fatty acid moiety onto a peptide dimer could maximize the interaction with lipopolysaccharide (LPS) and facilitate the permeabilization of the LPS barrier, thereby improving potency against Gram-negative pathogens. We systematically designed a series of N-lipidated peptide dimers that are active against Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE). The optimized lipid length was 6-10 carbons. At these lipid lengths, the N-lipidated peptide dimers exhibited strong LPS permeabilization. Compound 23 exhibited synergy with select antibiotics in most of the combinations tested. 23 and 32 also displayed rapid bactericidal activity. Importantly, 23 and 32 were nonhemolytic at 10 mg/mL, with no cellular or in vivo toxicity. These characteristics suggest that these compounds can overcome the limitations of current Gram-negative-targeted antimicrobials such as polymyxin B.
Journal of Medicinal Chemistry | 2017
Shuimu Lin; Jun-Jie Koh; Thet Tun Aung; Fanghui Lim; Jianguo Li; Hanxun Zou; Lin Wang; Rajamani Lakshminarayanan; Chandra Verma; Yingjun Wang; Donald Tan; Derong Cao; Roger W. Beuerman; Li Ren; Shouping Liu
This is the first report of the design of a new series of symmetric xanthone derivatives that mimic antimicrobial peptides using a total synthesis approach. This novel design is advantageous because of its low cost, synthetic simplicity and versatility, and easy tuning of amphiphilicity by controlling the incorporated cationic and hydrophobic moieties. Two water-soluble optimized compounds, 6 and 18, showed potent activities against Gram-positive bacteria, including MRSA and VRE (MICs = 0.78-6.25 μg/mL) with a rapid bactericidal effect, low toxicity, and no emergence of drug resistance. Both compounds demonstrated enhanced membrane selectivity that was higher than those of most membrane-active antimicrobials in clinical trials or previous reports. The compounds appear to kill bacteria by disrupting their membranes. Significantly, 6 was effective in vivo using a mouse model of corneal infection. These results provide compelling evidence that these compounds have therapeutic potential as novel antimicrobials for multidrug-resistant Gram-positive infections.
Journal of Medicinal Chemistry | 2017
Shuimu Lin; Jun-Jie Koh; Thet Tun Aung; Wan Ling Wendy Sin; Fanghui Lim; Lin Wang; Rajamani Lakshminarayanan; Lei Zhou; Donald Tan; Derong Cao; Roger W. Beuerman; Li Ren; Shouping Liu
A new series of semisynthetic flavone-based small molecules mimicking antimicrobial peptides has been designed from natural icaritin to combat drug-resistant Gram-positive bacterial infections. Compound 6 containing two arginine residues exhibited excellent antibacterial activity against Gram-positive bacteria, including MRSA, and very low toxicity to mammalian cells, resulting in a high selectivity of more than 511, comparable to that of several membrane-active antibiotics in clinical trials. Our data show for the first time that icaritin derivatives effectively kill bacteria. Meanwhile, this is the first study deploying a biomimicking strategy to design potent flavone-based membrane targeting antimicrobials. 6 showed rapid bactericidal activity by disrupting the bacterial membrane and can circumvent the development of bacterial resistance. Importantly, 6 was highly efficacious in a mouse model of corneal infection caused by MRSA and Staphylococcus aureus.
Journal of Medicinal Chemistry | 2017
Shuimu Lin; Wan Ling Wendy Sin; Jun-Jie Koh; Fanghui Lim; Lin Wang; Derong Cao; Roger W. Beuerman; Li Ren; Shouping Liu
New efficient antifungal agents are urgently needed to treat drug-resistant fungal infections. Here, we designed and synthesized a series of cationic xanthone amphiphilics as antifungal agents from natural α-mangostin to combat fungal resistance. The attachment of cationic residues on the xanthone scaffold of α-mangostin resulted in interesting antifungal agents with a novel mode of action. Two lead compounds (1 and 2) showed potent antifungal activity against a wide range of fungal pathogens, including drug-resistant Candida albicans, Aspergillus, and Fusarium strains and low cytotoxicity and hemolytic activity against mammalian cells. Both compounds can kill fungus rapidly by directly disrupting fungal cell membranes and avoid developing drug resistance. Additionally, compound 1 exhibited potent in vivo antifungal activity in the murine model of fungal keratitis. To our knowledge, membrane-targeting xanthone-based antifungals have not been reported previously. These results demonstrated that compounds 1 and 2 may be promising candidates for treating drug-resistant fungal infections.
Biochimica et Biophysica Acta | 2018
Jun-Jie Koh; Shuimu Lin; Yang Bai; Wendy Wan Ling Sin; Thet Tun Aung; Jianguo Li; Verma Chandra; Konstantin Pervushin; Roger W. Beuerman; Shouping Liu
Currently, membrane-targeting small antimicrobial peptidomimetics (SAP) are important in antibiotic development because bacteria appear to develop resistance to these surface-active compounds less readily. However, the molecular membrane-targeting action of SAPs has received little attention. In this study, we investigated the effect of oligomerization of amphiphilic xanthone, a model SAP, on its antimicrobial properties against both Gram-positive and Gram-negative bacteria. First, oligomer formation by an amphiphilic xanthone, compound 2 (also coded as AM052), was investigated via solution-state nuclear magnetic resonance (NMR) spectroscopy. Then, the effects of oligomerization on membrane disruption were further studied via biophysical approaches. The results showed that the antimicrobial activities of SAPs develop in several stages: oligomer formation in aqueous solution, initial binding of oligomers to the membrane-water interface followed by insertion into the membrane bilayer, aggregation of antimicrobial oligomers in the membrane, and induced membrane leakage. Ultimately, the presence of the oligomers in the bacterial membrane leads to decreased membrane fluidity and bacterial cell death. Interestingly, the early formation of large oligomers leads to stronger membrane disruption and more rapid bacterial killing. However, reduced antimicrobial activities against Gram-negative bacteria were observed for compounds that formed larger oligomers because the LPS layer acts as a barrier to large complexes. Taken together, our results suggest that oligomerization of SAPs has a strong impact on their antimicrobial properties.