Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Kameda is active.

Publication


Featured researches published by Jun Kameda.


Science | 2013

Low Coseismic Shear Stress on the Tohoku-Oki Megathrust Determined from Laboratory Experiments

Kohtaro Ujiie; Hanae Tanaka; Tsubasa Saito; Akito Tsutsumi; Jim Mori; Jun Kameda; Emily E. Brodsky; Frederick M. Chester; Nobuhisa Eguchi; Sean Toczko; Expedition; T Scientists

Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we conducted high-velocity (1.3 meters per second) friction experiments on samples retrieved from the plate-boundary thrust associated with the earthquake. The results show a small stress drop with very low peak and steady-state shear stress. The very low shear stress can be attributed to the abundance of weak clay (smectite) and thermal pressurization effects, which can facilitate fault slip. This behavior provides an explanation for the huge shallow slip that occurred during the earthquake.


Science | 2013

Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

Frederick M. Chester; Christie D. Rowe; Kohtaro Ujiie; James D. Kirkpatrick; Christine Regalla; Francesca Remitti; J. Casey Moore; Virginia G. Toy; Monica Wolfson-Schwehr; Santanu Bose; Jun Kameda; Jim Mori; Emily E. Brodsky; Nobuhisa Eguchi; Sean Toczko; Expedition; T Scientists

Deep Drilling for Earthquake Clues The 2011 Mw 9.0 Tohoku-Oki earthquake and tsunami were remarkable in many regards, including the rupturing of shallow trench sediments with huge associated slip (see the Perspective by Wang and Kinoshita). The Japan Trench Fast Drilling Project rapid response drilling expedition sought to sample and monitor the fault zone directly through a series of boreholes. Chester et al. (p. 1208) describe the structure and composition of the thin fault zone, which is predominately comprised of weak clay-rich sediments. Using these same fault-zone materials, Ujiie et al. (p. 1211) performed high-velocity frictional experiments to determine the physical controls on the large slip that occurred during the earthquake. Finally, Fulton et al. (p. 1214) measured in situ temperature anomalies across the fault zone for 9 months, establishing a baseline for frictional resistance and stress during and following the earthquake. The Tohoku-Oki earthquake occurred along a thin, clay-rich fault zone in the basal strata of the subducting plate. The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.


Science | 2013

Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake

Weiren Lin; Marianne Conin; John Moore; Frederick M. Chester; Yasuyuki Nakamura; Jim Mori; Louise Anderson; Emily E. Brodsky; Nobuhisa Eguchi; B. Cook; Tamara N. Jeppson; Monica Wolfson-Schwehr; Yoshinori Sanada; Shiro Saito; Yukari Kido; Takehiro Hirose; Jan H. Behrmann; Matt J. Ikari; Kohtaro Ujiie; Christie D. Rowe; James D. Kirkpatrick; Santanu Bose; Christine Regalla; Francesca Remitti; Virginia G. Toy; Patrick M. Fulton; Toshiaki Mishima; Tao Yang; Tianhaozhe Sun; Tsuyoshi Ishikawa

Stressed Out Large seismic events such as the 2011 magnitude 9.0 Tohoku-Oki earthquake can have profound effects not just on the severity of ground motion and tsunami generation, but also on the overall state of the crust in the surrounding regions. Lin et al. (p. 687) analyzed the stress 1 year after the Tohoku-Oki earthquake and compared it with the estimated stress state before the earthquake. In situ resistivity images were analyzed from three boreholes drilled into the crust across the plate interface where the earthquake occurred. Stress values indicate a nearly complete drop in stress following the earthquake such that the type of faulting above the plate boundary has changed substantially. These findings are consistent with observations that the sea floor moved nearly 50 meters during the earthquake. Borehole stress measurements indicate a nearly total stress drop in the region of largest slip. The 2011 moment magnitude 9.0 Tohoku-Oki earthquake produced a maximum coseismic slip of more than 50 meters near the Japan trench, which could result in a completely reduced stress state in the region. We tested this hypothesis by determining the in situ stress state of the frontal prism from boreholes drilled by the Integrated Ocean Drilling Program approximately 1 year after the earthquake and by inferring the pre-earthquake stress state. On the basis of the horizontal stress orientations and magnitudes estimated from borehole breakouts and the increase in coseismic displacement during propagation of the rupture to the trench axis, in situ horizontal stress decreased during the earthquake. The stress change suggests an active slip of the frontal plate interface, which is consistent with coseismic fault weakening and a nearly total stress drop.


Geology | 2015

Pelagic smectite as an important factor in tsunamigenic slip along the Japan Trench

Jun Kameda; Mayuko Shimizu; Kohtaro Ujiie; Takehiro Hirose; Matt J. Ikari; Jim Mori; Kiyokazu Oohashi; Gaku Kimura

The very large slip on the shallow portion of the subduction interface during the 2011 Tohoku-oki earthquake (M w 9.0) caused a huge tsunami along the northeast coast of Honshu, Japan. In order to elucidate the mechanics of such tsunamigenic slip, the Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project, JFAST), was carried out one year after the earthquake and succeeded in recovering rocks constituting the active plate boundary fault. Our mineralogical analyses using X-ray diffraction reveal that the shallow portion of the fault zone that caused the earthquake is significantly enriched in smectite compared to the surrounding sediments, which may be intimately linked to the tsunamigenic shallow faulting. For comparison, we also analyzed mineralogical features of incoming sediments just prior to subduction, recovered on the outer rise of the Japan Trench (Site 436, Deep Sea Drilling Project Leg 56), and found a characteristic smectite-rich horizon in the uppermost ∼5 m of the pelagic clay layer. This horizon should be mechanically weak and will become the future plate boundary fault, as observed in the JFAST cores. The smectite-rich deposits are broadly distributed in the northwestern Pacific Ocean, and may therefore potentially enhance conditions for large shallow slip during earthquakes that occur over a broad area of the Japan Trench plate boundary, which would result in large tsunamis for this region.


Geology | 2011

Progressive illitization in fault gouge caused by seismic slip propagation along a megasplay fault in the Nankai Trough

Asuka Yamaguchi; Arito Sakaguchi; Tatsuhiko Sakamoto; Koichi Iijima; Jun Kameda; Gaku Kimura; Kohtaro Ujiie; Frederick M. Chester; Olivier Fabbri; David L. Goldsby; Akito Tsutsumi; Chun-Feng Li; Daniel Curewitz

The question of whether coseismic ruptures along megasplay faults in accretionary prisms (i.e., large landward-dipping thrust faults branching from the plate boundary) reach the seafloor is critical for assessing the risk of tsunami disaster. However, samples from active megasplay faults have not previously been available. Here we present geochemical and mineralogical data of megasplay fault samples obtained from the shallow (


Journal of Structural Biology | 2010

Microtexture of larval shell of oyster, Crassostrea nippona: a FIB-TEM study.

Miki Kudo; Jun Kameda; Kazuko Saruwatari; Noriaki Ozaki; Keiju Okano; Hiromichi Nagasawa; Toshihiro Kogure

The initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100-150nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface. Plan-view TEM analysis suggested that the shell contains high density of {110} twins, which are the origin of the columnar contrast in the cross-sectional images. 72h after fertilization (the veliger stage), the shell grows up to 1.2-1.4mum thick accompanying an additional granular layer between the preexisting layer and embryo to form a distinctive two-layer structure. The granular layer is also composed of aragonite crystals sharing their c-axes perpendicular to the shell surface, but the crystals are arranged with a flexible rotation around the c-axes and not restricted solely to the {110} twin relation. No evidence to suggest the existence of amorphous calcium carbonate (ACC) was found through the observation. The well-regulated crystallographic properties found in the present sample imply initial shell formation probably via a direct deposition of crystalline aragonite.


Tectonics | 2015

Structure and lithology of the Japan Trench subduction plate boundary fault

James D. Kirkpatrick; Christie D. Rowe; Kohtaro Ujiie; J. Casey Moore; Christine Regalla; Francesca Remitti; Virginia G. Toy; Monica Wolfson-Schwehr; Jun Kameda; Santanu Bose; Frederick M. Chester

The 2011 Mw9.0 Tohoku-oki earthquake ruptured to the trench with maximum coseismic slip located on the shallow portion of the plate boundary fault. To investigate the conditions and physical processes that promoted slip to the trench, Integrated Ocean Drilling Program Expedition 343/343T sailed 1 year after the earthquake and drilled into the plate boundary ∼7 km landward of the trench, in the region of maximum slip. Core analyses show that the plate boundary decollement is localized onto an interval of smectite-rich, pelagic clay. Subsidiary structures are present in both the upper and lower plates, which define a fault zone ∼5–15m thick. Fault rocks recovered from within the clay-rich interval contain a pervasive scaly fabric defined by anastomosing, polished, and lineated surfaces with two predominant orientations. The scaly fabric is crosscut in several places by discrete contacts across which the scaly fabric is truncated and rotated, or different rocks are juxtaposed. These contacts are inferred to be faults. The plate boundary decollement therefore contains structures resulting from both distributed and localized deformation. We infer that the formation of both of these types of structures is controlled by the frictional properties of the clay: the distributed scaly fabric formed at low strain rates associated with velocity-strengthening frictional behavior, and the localized faults formed at high strain rates characterized by velocity-weakening behavior. The presence of multiple discrete faults resulting from seismic slip within the decollement suggests that rupture to the trench may be characteristic of this margin.


Geological Society, London, Special Publications | 2011

Reproduction of thermal pressurization and fluidization of clay-rich fault gouges by high-velocity friction experiments and implications for seismic slip in natural faults

Kohtaro Ujiie; Akito Tsutsumi; Jun Kameda

Abstract We examine the frictional properties and microstructures of clay-rich fault gouges subjected to thermal pressurization and fluidization, generated in high-velocity friction experiments under dry and wet conditions. In the dry tests, slip weakening occurs by thermal pressurization, which is marked by a fault-gouge expansion associated with a water-phase transition from liquid to vapour. The water is derived from dehydration of clay minerals by frictional heating. The resulting microstructure in the gouge layer is a random distribution of spherical clay–clast aggregates in the matrix, and mixing of different gouge constituents without shear surfaces. In the wet tests, slip weakening is caused by pore-fluid pressurization resulting from shear-enhanced compaction of the water-saturated gouge and frictional heating. Compared to the dry tests, the wet tests show smaller dynamic stress drops and slip weakening distance. The steady-state shear stress in the wet tests is almost independent of normal stress, suggesting a fluid-like behaviour of the fault gouge during high-velocity shearing. The microstructures after the wet tests show that the foliated zone is accompanied by grain-size segregation in the gouge layer. The grain-size segregation is attributed to the Brazil-nut effect resulting from the difference in dispersive pressure in the granular-fluid shear flow at high shear rates, indicating a fluidization of fault gouge. Our results obtained at seismic slip rates imply that the propagation of an earthquake rupture can be enhanced by fluid pressurization and frictional heat, potentially leaving characteristic microstructures resulting from water vaporization by frictional heating or flow sorting at high slip rates.


American Mineralogist | 2006

Stacking structures in pyrophyllite revealed by high-resolution transmission electron microscopy (HRTEM)

Toshihiro Kogure; Mayumi Jige; Jun Kameda; Akihiko Yamagishi; Ritsuro Miyawaki; Ryuji Kitagawa

Abstract Stacking structures in pyrophyllite, Al2Si4O10(OH)2, were investigated mainly by using high-resolution transmission electron microscopy (HRTEM). The specimens examined were large lath-shaped crystals (Berosovska, Urals, Russia) and massive aggregates of fine platy crystals (Nohwa, southwest Korea). Both specimens showed powder X-ray diffraction (XRD) patterns similar to those reported previously as the 2M polytype. The common stacking sequence in the two specimens is not monoclinic with two-layer periodicity as previously reported, but a uniform orientation of the 2:1 layers and near complete disorder of two alternative directions of interlayer displacement, i.e., lateral displacement between the two tetrahedral sheets across an interlayer region. The directions of interlayer displacement are about ± 2π/3 from that of the intralayer shift (lateral displacement between the two tetrahedral sheets within a 2:1 layer). Simulation of powder XRD patterns by this stacking model closely approximates the experimental pattern. Elongation of the lath-shaped Berosovska crystals corresponds to the direction of the intralayer shift, as seen in illite-1M. 2:1 layers with different orientations, and interlayer displacement almost parallel to the intralayer shift, were occasionally observed as stacking faults. Such disorder occurs more frequently in the massive Nohwa specimen than in the Berosovska specimen. Sub-micrometer domains of the 2M stacking sequence with regular alternation of the two directions of interlayer displacement were found in the Nohwa specimen.


Geophysical Research Letters | 2014

Mineral assemblage anomalies in the slip zone of the 1999 Taiwan Chi‐Chi earthquake: Ultrafine particles preserved only in the latest slip zone

Tetsuro Hirono; Jun Kameda; Hiroki Kanda; Wataru Tanikawa; Tsuyoshi Ishikawa

We determined mineral assemblages of samples from the Taiwan Chelungpu fault and from milling and heating experiments by using X-ray diffraction and scanning and transmission electron microscopy. The fault system contains three dominant fault zones, the shallowest of which slipped during the 1999 Chi-Chi earthquake. The quartz and clay mineral contents of the primary slip zone were low, and it contained partly amorphous ultrafine particles (several tens of nanometers). Up to 30 weight percent of materials in that zone could not be fit to standard diffraction patterns, whereas nearly 100 weight percent of those in surrounding samples could be. The unfitted component could be attributed to the observed ultrafine particles produced by comminution during the earthquake, because weak diffraction intensities are caused from mineral lattice distortion, granulation, and amorphous coatings. Such particles are a potential proxy for identifying the slip zone of the most recent earthquake along a fault.

Collaboration


Dive into the Jun Kameda's collaboration.

Top Co-Authors

Avatar

Gaku Kimura

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohei Hamada

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rina Fukuchi

Tokyo Gakugei University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge