Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Kyum Kim is active.

Publication


Featured researches published by Jun Kyum Kim.


Cancer Research | 2011

Frizzled 4 Regulates Stemness and Invasiveness of Migrating Glioma Cells Established by Serial Intracranial Transplantation

Xun Jin; Hee Young Jeon; Kyeung Min Joo; Jun Kyum Kim; Juyoun Jin; Sung Hak Kim; Bong Gu Kang; Samuel Beck; Se Jeong Lee; Joongkyu Kim; Ae Kyung Park; Woong-Yang Park; Yun Jaie Choi; Do Hyun Nam; Hyunggee Kim

One of the most detrimental hallmarks of glioblastoma multiforme (GBM) is cellular invasiveness, which is considered a potential cause of tumor recurrence. Infiltrated GBM cells are difficult to completely eradicate surgically and with local therapeutic modalities. Although much effort has focused on understanding the various mechanisms controlling GBM invasiveness, its nature remains poorly understood. In this study, we established highly serial intracranial transplantation. U87R4 cells were highly invasive and displayed stem cell-like properties, as compared to noninvasive but proliferative U87L4 cells. Microarray analysis during serial transplantation revealed that apoptosis-inducing genes (caspase3 and PDCD4) were downregulated whereas several cancer stem cell-relevant genes [Frizzled 4 (FZD4) and CD44] were upregulated in more invasive cells. U87R4 cells were resistant to anticancer drug-induced cell death, partly due to downregulation of caspase3 and PDCD4, and they retained activated Wnt/β-catenin signaling due to upregulation of Frizzled 4, which was sufficient to control neurosphere formation. We also found that FZD4 promoted expression of the epithelial to mesenchymal transition regulator SNAI1, along with acquisition of a mesenchymal phenotype. Taken together, our results argue that Frizzled 4 is a member of the Wnt signaling family that governs both stemness and invasiveness of glioma stem cells, and that it may be a major cause of GBM recurrence and poor prognosis.


Molecules and Cells | 2011

Telomerase activity-independent function of TERT allows glioma cells to attain cancer stem cell characteristics by inducing EGFR expression

Samuel Beck; Xun Jin; Young Woo Sohn; Jun Kyum Kim; Sung Hak Kim; Jinlong Yin; Xumin Pian; Sung Chan Kim; Do Hyun Nam; Yun Jaie Choi; Hyunggee Kim

Telomerase reverse transcriptase (TERT), the catalytic subunit of the enzyme telomerase, is robustly expressed in cancer cells. TERT enables cells to avoid chromosome shortening during repeated replication by maintaining telomere length. However, several lines of evidence indicate that many cancer cells exhibit shorter telomere length than normal tissues, implying an additional function of TERT in tumor formation and progression. Here, we report a telomerase activity-independent function of TERT that induces cancer stemness in glioma cells. Overexpression of TERT712, a telomerase activity-deficient form of TERT, in U87MG cells promoted cell self-renewal in vitro, and induced EGFR expression and formation of gliomas exhibiting cellular heterogeneity in vivo. In patients with glioblastoma multiforme, TERT expression showed a high correlation with EGFR expression, which is closely linked to the stemness gene signature. Induction of differentiation and TERT-knockdown in glioma stem cells led to a marked reduction in EGFR expression, cancer stemness, and anticancer drug resistance. Together, our findings indicate that TERT plays a crucial role in tumor progression by promoting cancer stemness through expression of EGFR.


Archives of Pharmacal Research | 2015

The molecular mechanisms underlying the therapeutic resistance of cancer stem cells

Jun Kyum Kim; Hee Young Jeon; Hyunggee Kim

Chemo-resistance and radio-resistance are a major cause of recurrence and progression of many cancers, regardless of improvements in therapies. Since cancer stem cells (CSCs) were identified as a rare population with the abilities of self-renewal; tumor initiation; aberrant differentiation, which contributes to tumor heterogeneity; and resistance to anticancer therapeutics, they have been considered a major cause of tumor recurrence post-therapy and a primary therapeutic target in relapse prevention. A number of studies have demonstrated the mechanisms underlying chemo-resistance and radio-resistance of CSCs. In this review, we describe intrinsic and extrinsic factors underlying CSC chemo-resistance and radio-resistance. The intrinsic factors regulate CSC signaling pathways involved in stem cell signaling, anti-apoptotic pathways, ABC transporter expression, and DNA damage repair systems. The extrinsic factors include the resistance mechanisms resulting from the interactions between CSCs and the microenvironment composed of vessels, fibroblasts, immune cells, extracellular matrix, and diverse soluble factors. Furthermore, we introduce diverse therapeutic agents used in experimental or clinical trials to target CSCs. Understanding how CSCs acquire resistance to anticancer therapeutics will give us opportunity to develop improved therapeutic approaches.


Experimental and Molecular Medicine | 2010

Human telomerase catalytic subunit (hTERT) suppresses p53-mediated anti-apoptotic response via induction of basic fibroblast growth factor.

Xun Jin; Samuel Beck; Young Woo Sohn; Jun Kyum Kim; Sung Hak Kim; Jinlong Yin; Xumin Pian; Sung Chan Kim; Yun Jaie Choi; Hyunggee Kim

Although human telomerase catalytic subunit (TERT) has several cellular functions including telomere homeostasis, genomic stability, cell proliferation, and tumorigenesis, the molecular mechanism underlying anti-apoptosis regulated by TERT remains to be elucidated. Here, we show that ectopic expression of TERT in spontaneously immortalized human fetal fibroblast (HFFS) cells, which are a telomerase- and p53-positive, leads to increases of cell proliferation and transformation, as well as a resistance to DNA damage response and inactivation of p53 function. We found that TERT and a mutant TERT (no telomerase activity) induce expression of basic fibroblast growth factor (bFGF), and ectopic expression of bFGF also allows cells to be resistant to DNA-damaging response and to suppress activation of p53 function under DNA-damaging induction. Furthermore, loss of TERT or bFGF markedly increases a p53 activity and DNA-damage sensitivity in HFFS, HeLa and U87MG cells. Therefore, our findings indicate that a novel TERT-bFGF axis accelerates the inactivation of p53 and consequent increase of resistance to DNA-damage response.


Cancer Letters | 2014

Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling.

Jun Kyum Kim; Xiong Jin; Young Woo Sohn; Xun Jin; Hee Young Jeon; Eun Jung Kim; Seok Won Ham; Hye Min Jeon; So Young Chang; Se Yeong Oh; Jinlong Yin; Sung Hak Kim; Jong Bae Park; Ichiro Nakano; Hyunggee Kim

The invasiveness of glioblastoma is a major cause of poor prognosis and relapse. However, the molecular mechanism controlling glioma cell invasion is poorly understood. Here, we report that receptor activator of nuclear factor kappa-B (NFκB) ligand (RANKL) promotes glioma cell invasion in vivo, but not in vitro. Unlike the invasiveness under in vitro culture conditions, in vivo xenograft studies revealed that LN229 cells expressing high endogenous RANKL generated more invasive tumors than U87MG cells expressing relatively low endogenous RANKL. Consistently, RANKL-overexpressing U87MG resulted in invasive tumors, whereas RANKL-depleted LN229 generated rarely invasive tumors. We found that the number of activated astrocytes was markedly increased in the periphery of RANKL-high invasive tumors. RANKL activated astrocytes through NFκB signaling and these astrocytes in turn secreted various factors which regulate glioma cell invasion. Among them, transforming growth factor β (TGF-β) signaling was markedly increased in glioblastoma specimens and xenograft tumors expressing high levels of RANKL. These results indicate that RANKL contributes to glioma invasion by modulating the peripheral microenvironment of the tumor, and that targeting RANKL signaling has important implications for the prevention of highly invasive glioblastoma.


Cell Death & Differentiation | 2015

The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells

Sung-Hak Kim; Eun Jung Kim; M. Hitomi; Se-Yeong Oh; Xun Jin; Hye-Min Jeon; Samuel Beck; Jun Kyum Kim; C. G. Park; S. Y. Chang; Jinlong Yin; T. S. Kim; Young Jun Jeon; J. Song; Young Chang Lim; Justin D. Lathia; Ichiro Nakano; Hyunggee Kim

Glioblastomas (GBMs) maintain their cellular heterogeneity with glioma stem cells (GSCs) producing a variety of tumor cell types. Here we interrogated the oncogenic roles of Lim domain only 2 (LMO2) in GBM and GSCs in mice and human. High expression of LMO2 was found in human patient-derived GSCs compared with the differentiated progeny cells. LMO2 is required for GSC proliferation both in vitro and in vivo, as shRNA-mediated LMO2 silencing attenuated tumor growth derived from human GSCs. Further, LMO2 is sufficient to induce stem cell characteristics (stemness) in mouse premalignant astrocytes, as forced LMO2 expression facilitated in vitro and in vivo growth of astrocytes derived from Ink4a/Arf null mice and acquisition of GSC phenotypes. A subset of mouse and human GSCs converted into vascular endothelial-like tumor cells both in vitro and in vivo, which phenotype was attenuated by LMO2 silencing and promoted by LMO2 overexpression. Mechanistically, the action of LMO2 for induction of glioma stemness is mediated by transcriptional regulation of Jagged1 resulting in activation of the Notch pathway, whereas LMO2 directly occupies the promoter regions of the VE-cadherin gene for a gain of endothelial cellular phenotype. Subsequently, selective ablation of human GSC-derived VE-cadherin-expressing cells attenuated vascular formation in mouse intracranial tumors, thereby significantly prolonging mouse survival. Clinically, LMO2 expression was elevated in GBM tissues and inversely correlated with prognosis of GBM patients. Taken together, our findings describe novel dual roles of LMO2 to induce tumorigenesis and angiogenesis, and provide potential therapeutic targets in GBMs.


Cell Reports | 2016

The ID1-CULLIN3 Axis Regulates Intracellular SHH and WNT Signaling in Glioblastoma Stem Cells.

Xun Jin; Hye Min Jeon; Xiong Jin; Eun Jung Kim; Jinlong Yin; Hee Young Jeon; Young Woo Sohn; Se Yeong Oh; Jun Kyum Kim; Sung Hak Kim; Ji Eun Jung; Sungwook Kwak; Kai Fu Tang; Yunsheng Xu; Jeremy N. Rich; Hyunggee Kim

Inhibitor of differentiation 1 (ID1) is highly expressed in glioblastoma stem cells (GSCs). However, the regulatory mechanism responsible for its role in GSCs is poorly understood. Here, we report that ID1 activates GSC proliferation, self-renewal, and tumorigenicity by suppressing CULLIN3 ubiquitin ligase. ID1 induces cell proliferation through increase of CYCLIN E, a target molecule of CULLIN3. ID1 overexpression or CULLIN3 knockdown confers GSC features and tumorigenicity to murine Ink4a/Arf-deficient astrocytes. Proteomics analysis revealed that CULLIN3 interacts with GLI2 and DVL2 and induces their degradation via ubiquitination. Consistent with ID1 knockdown or CULLIN3 overexpression in human GSCs, pharmacologically combined control of GLI2 and β-CATENIN effectively diminishes GSC properties. A ID1-high/CULLIN3-low expression signature correlates with a poor patient prognosis, supporting the clinical relevance of this signaling axis. Taken together, a loss of CULLIN3 represents a common signaling node for controlling the activity of intracellular WNT and SHH signaling pathways mediated by ID1.


Molecular Biology Reports | 2014

Rab3a promotes brain tumor initiation and progression.

Jun Kyum Kim; Seung Yup Lee; Chang Won Park; Suk Hwang Park; Jinlong Yin; Jaebong Kim; Jae Bong Park; Jae-Yong Lee; Hyunggee Kim; Sung Chan Kim

The Rab protein family is composed of small GTP-binding proteins involved in intracellular vesicle trafficking. In particular, Rab3a which is one of four Rab3 proteins (a, b, c, and d isoforms) is associated with synaptic vesicle trafficking in normal brain. However, despite the elevated level of Rab3a in tumors, its role remains unclear. Here we report a tumorigenic role of Rab3a in brain tumors. Elevated level of Rab3a expression in human was confirmed in both glioma cell lines and glioblastoma multiforme patient specimens. Ectopic Rab3a expression in glioma cell lines and primary astrocytes promoted cell proliferation by increasing cyclin D1 expression, induced resistance to anti-cancer drug and irradiation, and accelerated foci formation in soft agar and tumor formation in nude mice. The overexpression of Rab3a augmented the tumorsphere-forming ability of glioma cells and p53−/− astrocytes and increased expression levels of various stem cell markers. Taken together, our results indicate that Rab3a is a novel oncogene involved in glioma initiation and progression.


Tumor Biology | 2015

IRF7 promotes glioma cell invasion by inhibiting AGO2 expression

Jun Kyum Kim; Xiong Jin; Seok Won Ham; Seon Yong Lee; Sunyoung Seo; Sung Chan Kim; Sung Hak Kim; Hyunggee Kim

Interferon regulatory factor 7 (IRF7) is the master transcription factor that plays a pivotal role in the transcriptional activation of type I interferon genes in the inflammatory response. Our previous study revealed that IRF7 is an important regulator of tumor progression via the expression of inflammatory cytokines in glioma. Here, we report that IRF7 promotes glioma invasion and confers resistance to both chemotherapy and radiotherapy by inhibiting expression of argonaute 2 (AGO2), a regulator of microRNA biogenesis. We found that IRF7 and AGO2 expression levels were negatively correlated in patients with glioblastoma multiforme. Ectopic IRF7 expression led to a reduction in AGO2 expression, while depletion of IRF7 resulted in increased AGO2 expression in the LN-229 glioma cell line. In an in vitro invasion assay, IRF7 overexpression enhanced glioma cell invasion. Furthermore, reconstitution of AGO2 expression in IRF7-overexpressing cells led to decreased cell invasion, whereas the reduced invasion due to IRF7 depletion was rescued by AGO2 depletion. In addition, IRF7 induced chemoresistance and radioresistance of glioma cells by diminishing AGO2 expression. Finally, AGO2 depletion alone was sufficient to accelerate glioma cell invasion in vitro and in vivo, indicating that AGO2 regulates cancer cell invasion. Taken together, our results indicate that IRF7 promotes glioma cell invasion and both chemoresistance and radioresistance through AGO2 inhibition.


Clinical Cancer Research | 2018

Inhibition of ID1–BMPR2 intrinsic signaling sensitizes glioma stem cells to differentiation therapy

Xiong Jin; Xun Jin; Leo Kim; Deobrat Dixit; Hee Young Jeon; Eun Jung Kim; Jun Kyum Kim; Seon Yong Lee; Jinlong Yin; Jeremy N. Rich; Hyunggee Kim

Purpose: Normal stem cells tightly control self-renewal and differentiation during development, but their neoplastic counterparts, cancer stem cells (CSCs), sustain tumorigenicity both through aberrant activation of stemness and evasion of differentiation. Although regulation of CSC stemness has been extensively studied, the molecular mechanisms suppressing differentiation remain unclear. Experimental Design: We performed in silico screening and in vitro validation studies through Western blotting, qRT-PCR for treatment of WNT and SHH signaling inhibitors, and BMP signaling inducer with control and ID1-overexpressing cells. We also performed in vivo drug treatment assays with Balb/c nude mice. Results: Inhibitor of differentiation 1 (ID1) abrogated differentiation signals from bone morphogenetic protein receptor (BMPR) signaling in glioblastoma stem cells (GSCs) to promote self-renewal. ID1 inhibited BMPR2 expression through miRNAs, miR-17 and miR-20a, which are transcriptional targets of MYC. ID1 increases MYC expression by activating WNT and SHH signaling. Combined pharmacologic blockade of WNT and SHH signaling with BMP treatment significantly suppressed GSC self-renewal and extended survival of tumor-bearing mice. Conclusions: Collectively, our results suggested that ID1 simultaneously regulates stemness through WNT and SHH signaling and differentiation through BMPR-mediated differentiation signaling in GSCs, informing a novel therapeutic strategy of combinatorial targeting of stemness and differentiation. Clin Cancer Res; 24(2); 383–94. ©2017 AACR.

Collaboration


Dive into the Jun Kyum Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinlong Yin

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Jung Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do Hyun Nam

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge