Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Lai is active.

Publication


Featured researches published by Jun Lai.


Cell | 2013

Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure

Ya Chi Ho; Liang Shan; Nina N. Hosmane; Jeffrey Wang; Sarah B. Laskey; Daniel I. S. Rosenbloom; Jun Lai; Joel N. Blankson; Janet D. Siliciano; Robert F. Siliciano

Antiretroviral therapy fails to cure HIV-1 infection because latent proviruses persist in resting CD4(+) T cells. T cell activation reverses latency, but <1% of proviruses are induced to release infectious virus after maximum in vitro activation. The noninduced proviruses are generally considered defective but have not been characterized. Analysis of 213 noninduced proviral clones from treated patients showed 88.3% with identifiable defects but 11.7% with intact genomes and normal long terminal repeat (LTR) function. Using direct sequencing and genome synthesis, we reconstructed full-length intact noninduced proviral clones and demonstrated growth kinetics comparable to reconstructed induced proviruses from the same patients. Noninduced proviruses have unmethylated promoters and are integrated into active transcription units. Thus, it cannot be excluded that they may become activated in vivo. The identification of replication-competent noninduced proviruses indicates that the size of the latent reservoir-and, hence, the barrier to cure-may be up to 60-fold greater than previously estimated.


PLOS Pathogens | 2013

Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies

Susanne Eriksson; Erin H. Graf; Viktor Dahl; Matthew C. Strain; Steven A. Yukl; Elena S. Lysenko; Ronald J. Bosch; Jun Lai; Stanley Chioma; Fatemeh Emad; Mohamed Abdel-Mohsen; Frederick Hecht; Peter W. Hunt; Ma Somsouk; Joseph K. Wong; Rowena Johnston; Robert F. Siliciano; Douglas D. Richman; Una O'Doherty; Sarah Palmer; Steven G. Deeks; Janet D. Siliciano

HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4+ T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical trials, well-validated high-throughput assays that quantify this reservoir are urgently needed. Here we compare eleven different approaches for quantitating persistent HIV-1 in 30 patients on HAART, using the original viral outgrowth assay for resting CD4+ T cells carrying inducible, replication-competent viral genomes as a standard for comparison. PCR-based assays for cells containing HIV-1 DNA gave infected cell frequencies at least 2 logs higher than the viral outgrowth assay, even in subjects who started HAART during acute/early infection. This difference may reflect defective viral genomes. The ratio of infected cell frequencies determined by viral outgrowth and PCR-based assays varied dramatically between patients. Although strong correlations with the viral outgrowth assay could not be formally excluded for most assays, correlations achieved statistical significance only for integrated HIV-1 DNA in peripheral blood mononuclear cells and HIV-1 RNA/DNA ratio in rectal CD4+ T cells. Residual viremia was below the limit of detection in many subjects and did not correlate with the viral outgrowth assays. The dramatic differences in infected cell frequencies and the lack of a precise correlation between culture and PCR-based assays raise the possibility that the successful clearance of latently infected cells may be masked by a larger and variable pool of cells with defective proviruses. These defective proviruses are detected by PCR but may not be affected by reactivation strategies and may not require eradication to accomplish an effective cure. A molecular understanding of the discrepancy between infected cell frequencies measured by viral outgrowth versus PCR assays is an urgent priority in HIV-1 cure research.


Nature | 2015

Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations

Kai Deng; Mihaela Pertea; Anthony Rongvaux; Leyao Wang; Christine M. Durand; Gabriel Ghiaur; Jun Lai; Holly McHugh; Haiping Hao; Hao Zhang; Joseph B. Margolick; Cagan Gurer; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Steven G. Deeks; Till Strowig; Priti Kumar; Janet D. Siliciano; Richard A. Flavell; Liang Shan; Robert F. Siliciano

Despite antiretroviral therapy (ART), human immunodeficiency virus (HIV)-1 persists in a stable latent reservoir, primarily in resting memory CD4+ T cells. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed and tested both in vitro and in vivo. A key remaining question is whether virus-specific immune mechanisms, including cytotoxic T lymphocytes (CTLs), can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad-spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir.


Journal of Virology | 2007

Isolation and Characterization of Replication-Competent Human Immunodeficiency Virus Type 1 from a Subset of Elite Suppressors

Joel N. Blankson; Justin R. Bailey; Seema M. Thayil; Hung-Chih Yang; Kara G. Lassen; Jun Lai; Shiv K. Gandhi; Janet D. Siliciano; Thomas M. Williams; Robert F. Siliciano

ABSTRACT Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected individuals who control viremia to levels below the limit of detection of current assays. The mechanisms involved in this control have not been fully elucidated. Several studies have demonstrated that some ES are infected with defective viruses, but it remains unclear whether others are infected with replication-competent HIV-1. To answer this question, we used a sensitive coculture assay in an attempt to isolate replication-competent virus from a cohort of 10 ES. We successfully cultured six replication-competent isolates from 4 of the 10 ES. The frequency of latently infected cells in these patients was more than a log lower than that seen in patients on highly active antiretroviral therapy with undetectable viral loads. Full-length sequencing of all six isolates revealed no large deletions in any of the genes. A few mutations and small insertions and deletions were found in some isolates, but phenotypic analysis of the affected genes suggested that their function remained intact. Furthermore, all six isolates replicated as well as standard laboratory strains in vitro. The results suggest that some ES are infected with HIV-1 isolates that are fully replication competent and that long-term immunologic control of replication-competent HIV-1 is possible.


The Journal of Infectious Diseases | 2007

Stability of the Latent Reservoir for HIV-1 in Patients Receiving Valproic Acid

Janet D. Siliciano; Jun Lai; Marc Callender; Eleanor Pitt; Hao Zhang; Joseph B. Margolick; Joel E. Gallant; Joseph Cofrancesco; Richard D. Moore; Stephen J. Gange; Robert F. Siliciano

In light of a recent report that short-term treatment with valproic acid (VA) might accelerate the decay of the latent reservoir for HIV-1 in patients receiving combination therapy and allow eventual eradication of the infection, we studied patients with prolonged suppression of viremia who were receiving combination therapy and who had also been receiving chronic VA therapy for neurological or psychiatric conditions. Latently infected cells were readily detected in all patients at levels comparable to those seen in patients receiving combination therapy alone. We conclude that the clinical use of VA has no ancillary effect on the decay of the latent reservoir.


PLOS Pathogens | 2013

Rapid Quantification of the Latent Reservoir for HIV-1 Using a Viral Outgrowth Assay

Gregory M. Laird; Evelyn E. Eisele; S. Alireza Rabi; Jun Lai; Stanley Chioma; Joel N. Blankson; Janet D. Siliciano; Robert F. Siliciano

HIV-1 persists in infected individuals in a stable pool of resting CD4+ T cells as a latent but replication-competent provirus. This latent reservoir is the major barrier to the eradication of HIV-1. Clinical trials are currently underway investigating the effects of latency-disrupting compounds on the persistence of the latent reservoir in infected individuals. To accurately assess the effects of such compounds, accurate assays to measure the frequency of latently infected cells are essential. The development of a simpler assay for the latent reservoir has been identified as a major AIDS research priority. We report here the development and validation of a rapid viral outgrowth assay that quantifies the frequency of cells that can release replication-competent virus following cellular activation. This new assay utilizes bead and column-based purification of resting CD4+ T cells from the peripheral blood of HIV-1 infected patients rather than cell sorting to obtain comparable resting CD4+ T cell purity. This new assay also utilizes the MOLT-4/CCR5 cell line for viral expansion, producing statistically comparable measurements of the frequency of latent HIV-1 infection. Finally, this new assay employs a novel quantitative RT-PCR specific for polyadenylated HIV-1 RNA for virus detection, which we demonstrate is a more sensitive and cost-effective method to detect HIV-1 replication than expensive commercial ELISA detection methods. The reductions in both labor and cost make this assay suitable for quantifying the frequency of latently infected cells in clinical trials of HIV-1 eradication strategies.


Nature Medicine | 2016

Defective proviruses rapidly accumulate during acute HIV-1 infection

Katherine M. Bruner; Alexandra J. Murray; Ross A. Pollack; Mary Soliman; Sarah B. Laskey; Adam A. Capoferri; Jun Lai; Matthew C. Strain; Steven M. Lada; Ya Chi Ho; Douglas D. Richman; Steven G. Deeks; Janet D. Siliciano; Robert F. Siliciano

Although antiretroviral therapy (ART) suppresses viral replication to clinically undetectable levels, human immunodeficiency virus type 1 (HIV-1) persists in CD4+ T cells in a latent form that is not targeted by the immune system or by ART. This latent reservoir is a major barrier to curing individuals of HIV-1 infection. Many individuals initiate ART during chronic infection, and in this setting, most proviruses are defective. However, the dynamics of the accumulation and the persistence of defective proviruses during acute HIV-1 infection are largely unknown. Here we show that defective proviruses accumulate rapidly within the first few weeks of infection to make up over 93% of all proviruses, regardless of how early ART is initiated. By using an unbiased method to amplify near-full-length proviral genomes from HIV-1-infected adults treated at different stages of infection, we demonstrate that early initiation of ART limits the size of the reservoir but does not profoundly affect the proviral landscape. This analysis allows us to revise our understanding of the composition of proviral populations and estimate the true reservoir size in individuals who were treated early versus late in infection. Additionally, we demonstrate that common assays for measuring the reservoir do not correlate with reservoir size, as determined by the number of genetically intact proviruses. These findings reveal hurdles that must be overcome to successfully analyze future HIV-1 cure strategies.


Clinical Infectious Diseases | 2014

A Pilot Study Assessing the Safety and Latency-Reversing Activity of Disulfiram in HIV-1–Infected Adults on Antiretroviral Therapy

Adam M. Spivak; Adriana Andrade; Evelyn E. Eisele; Peter Bacchetti; Namandjé N. Bumpus; Fatemeh Emad; Robert W. Buckheit; Elinore F. McCance-Katz; Jun Lai; Margene Kennedy; Geetanjali Chander; Robert F. Siliciano; Janet D. Siliciano; Steven G. Deeks

BACKGROUND Transcriptionally silent human immunodeficiency virus type 1 (HIV-1) DNA persists in resting memory CD4(+) T cells despite antiretroviral therapy. In a primary cell model, the antialcoholism drug disulfiram has been shown to induce HIV-1 transcription in latently infected resting memory CD4(+) T cells at concentrations achieved in vivo. METHODS We conducted a single-arm pilot study to evaluate whether 500 mg of disulfiram administered daily for 14 days to HIV-1-infected individuals on stable suppressive antiretroviral therapy would result in reversal of HIV-1 latency with a concomitant transient increase in residual viremia or depletion of the latent reservoir in resting memory CD4(+) T cells. RESULTS Disulfiram was safe and well tolerated. There was a high level of subject-to-subject variability in plasma disulfiram levels. The latent reservoir did not change significantly (1.16-fold change; 95% confidence interval [CI], .70- to 1.92-fold; P = .56). During disulfiram administration, residual viremia did not change significantly compared to baseline (1.53-fold; 95% CI, .88- to 2.69-fold; P = .13), although residual viremia was estimated to increase by 1.88-fold compared to baseline during the postdosing period (95% CI, 1.03- to 3.43-fold; P = .04). In a post hoc analysis, a rapid and transient increase in viremia was noted in a subset of individuals (n = 6) with immediate postdose sampling (HIV-1 RNA increase, 2.96-fold; 95% CI, 1.29- to 6.81-fold; P = .01). CONCLUSIONS Administration of disulfiram to patients on antiretroviral therapy does not reduce the size of the latent reservoir. A possible dose-related effect on residual viremia supports future studies assessing the impact of higher doses on HIV-1 production. Disulfiram affects relevant signaling pathways and can be safely administered, supporting future studies of this drug.


Nature Medicine | 2012

A Quantitative Basis for Antiretroviral Therapy for HIV-1 Infection

Benjamin L. Jilek; Melissa Zarr; Maame Efua S. Sampah; S. Alireza Rabi; Cynthia K. Bullen; Jun Lai; Lin Shen; Robert F. Siliciano

Highly active antiretroviral therapy (HAART) has dramatically decreased mortality from HIV-1 infection and is a major achievement of modern medicine. However, there is no fundamental theory of HAART. Elegant models describe the dynamics of viral replication, but a metric for the antiviral activity of drug combinations relative to a target value needed for control of replication is lacking. Treatment guidelines are based on empirical results of clinical trials in which other factors such as regimen tolerability also affect outcome. Why only certain drug combinations control viral replication remains unclear. Here we quantify the intrinsic antiviral activity of antiretroviral drug combinations. We show that most single antiretroviral drugs show previously unappreciated complex nonlinear pharmacodynamics that determine their inhibitory potential at clinical concentrations. We demonstrate that neither of the major theories for drug combinations accurately predicts the combined effects of multiple antiretrovirals. However, the combined effects can be understood with a new approach that considers the degree of independence of drug effects. This analysis allows a direct comparison of the inhibitory potential of different drug combinations under clinical concentrations, reconciles the results of clinical trials, defines a target level of inhibition associated with treatment success and provides a rational basis for treatment simplification and optimization.


Journal of Biological Chemistry | 2008

The Antiherpetic Drug Acyclovir Inhibits HIV Replication and Selects the V75I Reverse Transcriptase Multidrug Resistance Mutation

Moira A. McMahon; Janet D. Siliciano; Jun Lai; Jun O. Liu; James T. Stivers; Robert F. Siliciano; Rahul M. Kohli

The antiviral drug acyclovir is a guanosine nucleoside analog that potently inhibits herpes simplex virus (HSV) replication. Acyclovir treatment in patients coinfected with HSV and human immunodeficiency virus (HIV) has been observed to alter disease course and decrease HIV viral load, a finding that has been attributed to indirect effects of HSV suppression on HIV replication. Based on this hypothesis, several clinical studies have recently investigated the use of acyclovir for treatment of patients coinfected with HSV and HIV or for prophylaxis against HIV transmission. In this report, we use a single round HIV infectivity assay to show that acyclovir directly inhibits HIV infection with an IC50 of ∼5 μm. The target of acyclovir in HIV-infected cells is validated as HIV reverse transcriptase (RT) by the emergence of the RT variant V75I under the selective pressure of acyclovir. The V75I mutation is part of the multidrug resistance pathway that enhances viral resistance to many of the best RT inhibitors approved for the treatment of HIV. Biochemical analyses demonstrate that acyclovir triphosphate is a chain terminator substrate for HIV RT and can compete with dGTP for incorporation into DNA. Although acyclovir may prove a useful lead for development of new HIV treatments, the selection of resistant mutants raises a cautionary note to the use of acyclovir monotherapy in patients coinfected with HSV and HIV.

Collaboration


Dive into the Jun Lai's collaboration.

Top Co-Authors

Avatar

Robert F. Siliciano

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Janet D. Siliciano

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel E. Gallant

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joel N. Blankson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hao Zhang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam A. Capoferri

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge