Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Lin Guan is active.

Publication


Featured researches published by Jun-Lin Guan.


Nature Protocols | 2007

In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro.

Chun Chi Liang; Ann Y. Park; Jun-Lin Guan

The in vitro scratch assay is an easy, low-cost and well-developed method to measure cell migration in vitro. The basic steps involve creating a “scratch” in a cell monolayer, capturing the images at the beginning and at regular intervals during cell migration to close the scratch, and comparing the images to quantify the migration rate of the cells. Compared to other methods, the in vitro scratch assay is particularly suitable for studies on the effects of cell–matrix and cell–cell interactions on cell migration, mimic cell migration during wound healing in vivo and are compatible with imaging of live cells during migration to monitor intracellular events if desired. Besides monitoring migration of homogenous cell populations, this method has also been adopted to measure migration of individual cells in the leading edge of the scratch. Not taking into account the time for transfection of cells, in vitro scratch assay per se usually takes from several hours to overnight.


Molecular Biology of the Cell | 2009

Nutrient-dependent mTORC1 Association with the ULK1–Atg13–FIP200 Complex Required for Autophagy

Nao Hosokawa; Taichi Hara; Takeshi Kaizuka; Chieko Kishi; Akito Takamura; Yutaka Miura; Shun-ichiro Iemura; Tohru Natsume; Kenji Takehana; Naoyuki Yamada; Jun-Lin Guan; Noriko Oshiro; Noboru Mizushima

Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable approximately 3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1-Atg13-FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1-Atg13-FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the approximately 3-MDa ULK1-Atg13-FIP200 complex.


Journal of Cell Biology | 2008

FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells

Taichi Hara; Akito Takamura; Chieko Kishi; Shun-ichiro Iemura; Tohru Natsume; Jun-Lin Guan; Noboru Mizushima

Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51–like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.


Journal of Clinical Investigation | 2010

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts

Christophe Ginestier; Suling Liu; Mark E. Diebel; Hasan Korkaya; Ming Luo; Marty Brown; Julien Wicinski; Olivier Cabaud; Emmanuelle Charafe-Jauffret; Daniel Birnbaum; Jun-Lin Guan; Gabriela Dontu; Max S. Wicha

Recent evidence suggests that breast cancer and other solid tumors possess a rare population of cells capable of extensive self-renewal that contribute to metastasis and treatment resistance. We report here the development of a strategy to target these breast cancer stem cells (CSCs) through blockade of the IL-8 receptor CXCR1. CXCR1 blockade using either a CXCR1-specific blocking antibody or repertaxin, a small-molecule CXCR1 inhibitor, selectively depleted the CSC population in 2 human breast cancer cell lines in vitro. Furthermore, this was followed by the induction of massive apoptosis in the bulk tumor population via FASL/FAS signaling. The effects of CXCR1 blockade on CSC viability and on FASL production were mediated by the FAK/AKT/FOXO3A pathway. In addition, repertaxin was able to specifically target the CSC population in human breast cancer xenografts, retarding tumor growth and reducing metastasis. Our data therefore suggest that CXCR1 blockade may provide a novel means of targeting and eliminating breast CSCs.


Cancer and Metastasis Reviews | 2009

Signal transduction by focal adhesion kinase in cancer

Jihe Zhao; Jun-Lin Guan

Cellular interactions with extracellular matrix play essential roles in tumor initiation, progression and metastasis. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase identified as a key mediator of signaling by integrins, a major family of cell surface receptors for extracellular matrix, as well as other receptors in both normal and cancer cells. FAK is activated by integrins through disruption of an auto-inhibitory intra-molecular interaction between its kinase domain and the amino terminal FERM domain. The activated FAK forms a binary complex with Src family kinases which can phosphorylate other substrates and trigger multiple intracellular signaling pathways to regulate various cellular functions. Subcellular localization of FAK in focal adhesions is essential for FAK signaling, which is another distinguishing feature of the kinase. Integrin-FAK signaling has been shown to activate a number of signaling pathways through phosphorylation and protein-protein interactions to promote tumorigenesis. FAK also plays a prominent role in tumor progression and metastasis through its regulation of both cancer cells and their microenvironments including cancer cell migration, invasion, epithelial to mesenchymal transition, and angiogenesis. More recently, a role for FAK in tumor initiation and progression has been demonstrated directly using xenograft as well as conditional knockout mouse models. In agreement with these experimental data, overexpression and activation of FAK have been found in a variety of human cancers. A number of small molecule inhibitors for FAK have been developed and in various phases of testing for cancer treatments. Overall, the intensive research on FAK signaling in cancer have yielded a wealth of information on this pivotal kinase and these and future studies are leading to potentially novel therapies for cancer.


Journal of Biological Chemistry | 1997

Cleavage of Focal Adhesion Kinase by Caspases during Apoptosis

Long Ping Wen; Jimothy A. Fahrni; Sergiu Troie; Jun-Lin Guan; Kim Orth; Glenn D. Rosen

Apoptotic cells undergo characteristic morphological changes that include detachment of cell attachment from the substratum and loss of cell-cell interactions. Attachment of cells to the extracellular matrix and to other cells is mediated by integrins. The interactions of integrins with the extracellular matrix activates focal adhesion kinase (FAK) and suppresses apoptosis in diverse cell types. Members of the tumor necrosis family such as Fas and Apo-2L, also known as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induce apoptosis in both suspension and adherent cells through the activation of caspases. These caspases, when activated, cleave substrates that are important for the maintenance of nuclear and membrane integrity. In this study, we show that FAK is sequentially cleaved into two different fragments early in Apo-2L-induced apoptosis. We also demonstrate that FAK cleavage is mediated by caspases and that FAK shows unique sensitivity to different caspases. Our results suggest that disruption of FAK may contribute to the morphological changes observed in apoptotic suspension and adherent cells.


The International Journal of Biochemistry & Cell Biology | 1997

Role of focal adhesion kinase in integrin signaling

Jun-Lin Guan

Integrins are the major cell surface receptors for extracellular matrix molecules, which play critical roles in a variety of biological processes. Focal adhesion kinase has recently been established as a key component of the signal transduction pathways triggered by integrins. Aggregation of FAK with integrins and cytoskeletal proteins in focal contacts has been proposed to be responsible for FAK activation and autophosphorylation by integrins in cell adhesion. This may be achieved by FAK interaction with talin or other cytoskeletal proteins that in turn associate with the cytoplasmic domain of integrin beta subunits. Autophosphorylation of FAK at Y397 leads to its association with Src, resulting in activation of both kinases. The activated FAK/Src complex acts on potential substrates tensin, paxillin and p130cas. Besides cytoskeletal regulation, FAK phosphorylation and/or binding to paxillin and p130cas may trigger downstream activation of MAP kinase by the adoptor protein Crk. Src association with FAK may also lead to its phosphorylation of other sites on FAK, including a binding site for Grb2. Cell adhesion-dependent association of FAK and Grb2 may provide a mechanism by which MAP kinase is activated in cell adhesion. PI 3-kinase has also been shown to bind FAK in a cell adhesion-dependent manner at the major autophosphorylation site Y397. This association could lead to activation of PI 3-kinase and its downstream effectors. Recent results from a number of different approaches have shown that integrin signaling through FAK leads to increased cell migration on fibronectin as well as potentially regulating cell proliferation and survival.


Advanced Drug Delivery Reviews | 2011

Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis

Xiaofeng Zhao; Jun-Lin Guan

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays critical roles in integrin-mediated signal transductions and also participates in signaling by other cell surface receptors. In integrin-mediated cell adhesion, FAK is activated via disruption of an auto-inhibitory intra-molecular interaction between its amino terminal FERM domain and the central kinase domain. The activated FAK forms a complex with Src family kinases, which initiates multiple downstream signaling pathways through phosphorylation of other proteins to regulate different cellular functions. Multiple downstream signaling pathways are identified to mediate FAK regulation of migration of various normal and cancer cells. Extensive studies in cultured cells as well as conditional FAK knockout mouse models indicated a critical role of FAK in angiogenesis during embryonic development and cancer progression. More recent studies also revealed kinase-independent functions for FAK in endothelial cells and fibroblasts. Consistent with its roles in cell migration and angiogenesis, increased expression and/or activation of FAK are found in a variety of human cancers. Therefore, small molecular inhibitors for FAK kinase activity as well as future development of novel therapies targeting the potentially kinase-independent functions of FAK are promising treatments for metastatic cancer as well as other diseases.


Journal of Cell Biology | 2005

Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis

Tang-Long Shen; Ann Y J Park; Ana Alcaraz; Xu Peng; Ihnkyung Jang; Pandelakis A. Koni; Richard A. Flavell; Hua Gu; Jun-Lin Guan

Focal adhesion kinase (FAK) is a critical mediator of signal transduction by integrins and growth factor receptors in a variety of cells including endothelial cells (ECs). Here, we describe EC-specific knockout of FAK using a Cre-loxP approach. In contrast to the total FAK knockout, deletion of FAK specifically in ECs did not affect early embryonic development including normal vasculogenesis. However, in late embryogenesis, FAK deletion in the ECs led to defective angiogenesis in the embryos, yolk sac, and placenta, impaired vasculature and associated hemorrhage, edema, and developmental delay, and late embryonic lethal phenotype. Histologically, ECs and blood vessels in the mutant embryos present a disorganized, detached, and apoptotic appearance. Consistent with these phenotypes, deletion of FAK in ECs isolated from the floxed FAK mice led to reduced tubulogenesis, cell survival, proliferation, and migration in vitro. Together, these results strongly suggest a role of FAK in angiogenesis and vascular development due to its essential function in the regulation of multiple EC activities.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells.

Song Li; Peter J. Butler; Yingxiao Wang; Ying-Li Hu; Dong Cho Han; Shunichi Usami; Jun-Lin Guan; Shu Chien

The migration of vascular endothelial cells (ECs) is critical in vascular remodeling. We showed that fluid shear stress enhanced EC migration in flow direction and called this “mechanotaxis.” To visualize the molecular dynamics of focal adhesion kinase (FAK) at focal adhesions (FAs), FAK tagged with green fluorescence protein (GFP) was expressed in ECs. Within 10 min of shear stress application, lamellipodial protrusion was induced at cell periphery in the flow direction, with the recruitment of FAK at FAs. ECs under flow migrated with polarized formation of new FAs in flow direction, and these newly formed FAs subsequently disassembled after the rear of the cell moved over them. The cells migrating under flow had a decreased number of FAs. In contrast to shear stress, serum did not significantly affect the speed of cell migration. Serum induced lamellipodia and FAK recruitment at FAs without directional preference. FAK(Y397) phosphorylation colocalized with GFP-FAK at FAs in both shear stress and serum experiments. The total level of FAK(Y397) phosphorylation after shear stress was lower than that after serum treatment, suggesting that the polarized change at cell periphery rather than the total level of FAK(Y397) phosphorylation is important for directional migration. Our results demonstrate the dynamics of FAK at FAs during the directional migration of EC in response to mechanical force, and suggest that mechanotaxis is an important mechanism controlling EC migration.

Collaboration


Dive into the Jun-Lin Guan's collaboration.

Top Co-Authors

Avatar

Tang-Long Shen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chenran Wang

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song Chen

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Fei Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jihe Zhao

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Syn Kok Yeo

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Shaogang Sun

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge