Jun Minagawa
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jun Minagawa.
Nature | 2010
Masakazu Iwai; Kenji Takizawa; Ryutaro Tokutsu; Akira Okamuro; Yuichiro Takahashi; Jun Minagawa
Photosynthetic light reactions establish electron flow in the chloroplast’s thylakoid membranes, leading to the production of the ATP and NADPH that participate in carbon fixation. Two modes of electron flow exist—linear electron flow (LEF) from water to NADP+ via photosystem (PS) II and PSI in series and cyclic electron flow (CEF) around PSI (ref. 2). Although CEF is essential for satisfying the varying demand for ATP, the exact molecule(s) and operational site are as yet unclear. In the green alga Chlamydomonas reinhardtii, the electron flow shifts from LEF to CEF on preferential excitation of PSII (ref. 3), which is brought about by an energy balancing mechanism between PSII and PSI (state transitions). Here, we isolated a protein supercomplex composed of PSI with its own light-harvesting complex (LHCI), the PSII light-harvesting complex (LHCII), the cytochrome b6f complex (Cyt bf), ferredoxin (Fd)-NADPH oxidoreductase (FNR), and the integral membrane protein PGRL1 (ref. 5) from C. reinhardtii cells under PSII-favouring conditions. Spectroscopic analyses indicated that on illumination, reducing equivalents from downstream of PSI were transferred to Cyt bf, whereas oxidised PSI was re-reduced by reducing equivalents from Cyt bf, indicating that this supercomplex is engaged in CEF (Supplementary Fig. 1). Thus, formation and dissociation of the PSI–LHCI–LHCII–FNR–Cyt bf–PGRL1 supercomplex not only controlled the energy balance of the two photosystems, but also switched the mode of photosynthetic electron flow.
Photosynthesis Research | 2004
Jun Minagawa; Yuichiro Takahashi
Photosystem II (PSII) is a multisubunit chlorophyll–protein complex that drives electron transfer from water to plastoquinone using energy derived from light. In green plants, the native form of PSII is surrounded by the light-harvesting complex (LHCII complex) and thus it is called the PSII–LHCII supercomplex. Over the past several years, understanding of the structure, function, and assembly of PSII and LHCII complexes has increased considerably. The unicellular green alga Chlamydomonas reinhardtii has been an excellent model organism to study PSII and LHCII complexes, because this organism grows heterotrophically and photoautotrophically and it is amenable to biochemical, genetic, molecular biological and recombinant DNA methodology. Here, the genes encoding and regulating components of the C. reinhardtii PSII–LHCII supercomplex have been thoroughly catalogued: they include 15 chloroplast and 20 nuclear structural genes as well as 13 nuclear genes coding for regulatory factors. This review discusses these molecular genetic data and presents an overview of the structure, function and assembly of PSII and LHCII complexes.
Plant Physiology | 2002
Haruhiko Teramoto; Akira Nakamori; Jun Minagawa; Takaaki Ono
Excessive light conditions repressed the levels of mRNAs accumulation of multiple Lhc genes encoding light-harvesting chlorophyll-a/b (LHC) proteins of photosystem (PS)II in the unicellular green alga, Chlamydomonas reinhardtii. The light intensity required for the repression tended to decrease with lowering temperature or CO2concentration. The responses of six LhcII genes encoding the major LHC (LHCII) proteins and two genes (Lhcb4 andLhcb5) encoding the minor LHC proteins of PSII (CP29 and CP26) were similar. The results indicate that the expression of theseLhc genes is coordinately repressed when the energy input through the antenna systems exceeds the requirement for CO2 assimilation. The Lhc mRNA level repressed under high-light conditions was partially recovered by adding the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting that redox signaling via photosynthetic electron carriers is involved in the gene regulation. However, the mRNA level was still considerably lower under high-light than under low-light conditions even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Repression of theLhc genes by high light was prominent even in the mutants deficient in the reaction center(s) of PSII or both PSI and PSII. The results indicate that two alternative processes are involved in the repression of Lhc genes under high-light conditions, one of which is independent of the photosynthetic reaction centers and electron transport events.
The Plant Cell | 2008
Masakazu Iwai; Yuichiro Takahashi; Jun Minagawa
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits.
Journal of Biological Chemistry | 2009
Ryutaro Tokutsu; Masakazu Iwai; Jun Minagawa
In oxygen-evolving photosynthesis, the two photosystems, photosystem I (PSI) and photosystem II (PSII), function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under various light conditions. State transitions balance excitation energy between the two photosystems by redistributing light-harvesting complex II (LHCII) proteins. Here we describe two RNA interference (RNAi) mutants of the green alga Chlamydomonas reinhardtii with one of the minor monomeric LHCII proteins, CP29 or CP26, knocked down. These two proteins have been identified in PSI-LHCI supercomplexes that harbor mobile LHCII proteins from PSII under a state where PSII is preferentially excited (State 2). We show that both the CP29 and CP26 RNAi mutants undergo reductions in the PSII antenna size during a transition from State 1 (a state where PSI is preferentially excited) to State 2, as reflected by nonphotochemical quenching of fluorescence, low temperature fluorescence spectra, and functional absorption cross-section. However, the undocked LHCIIs from PSII do not re-associate with PSI in the CP29-RNAi (b4i) mutant because the antenna size of PSI was not complementary increased. The mobile LHCIIs in the CP26-RNAi (b5i) mutant, however, re-associate with PSI, whose PSI-LHCI/II supercomplex is visualized on a sucrose density gradient. This study clarifies that CP29, not CP26, is an essential component in state transitions and demonstrates that CP29 is crucial when mobile LHCIIs re-associate with PSI under State 2 conditions.
Nature | 2016
Dimitris Petroutsos; Ryutaro Tokutsu; Shinichiro Maruyama; Serena Flori; Andre Greiner; Leonardo Magneschi; Loic Cusant; Tilman Kottke; Maria Mittag; Peter Hegemann; Giovanni Finazzi; Jun Minagawa
In plants and algae, light serves both as the energy source for photosynthesis and a biological signal that triggers cellular responses via specific sensory photoreceptors. Red light is perceived by bilin-containing phytochromes and blue light by the flavin-containing cryptochromes and/or phototropins (PHOTs), the latter containing two photosensory light, oxygen, or voltage (LOV) domains. Photoperception spans several orders of light intensity, ranging from far below the threshold for photosynthesis to values beyond the capacity of photosynthetic CO2 assimilation. Excess light may cause oxidative damage and cell death, processes prevented by enhanced thermal dissipation via high-energy quenching (qE), a key photoprotective response. Here we show the existence of a molecular link between photoreception, photosynthesis, and photoprotection in the green alga Chlamydomonas reinhardtii. We show that PHOT controls qE by inducing the expression of the qE effector protein LHCSR3 (light-harvesting complex stress-related protein 3) in high light intensities. This control requires blue-light perception by LOV domains on PHOT, LHCSR3 induction through PHOT kinase, and light dissipation in photosystem II via LHCSR3. Mutants deficient in the PHOT gene display severely reduced fitness under excessive light conditions, indicating that the sensing, utilization, and dissipation of light is a concerted process that plays a vital role in microalgal acclimation to environments of variable light intensities.
FEBS Letters | 1998
Miwa Sugiura; Yorinao Inoue; Jun Minagawa
We have developed a simple and rapid procedure to isolate an oxygen‐evolving photosystem II (PS II) core complex from Chlamydomonas reinhardtii. A His‐tag made of six consecutive histidine residues was genetically attached at the carboxy terminus of D2 protein to create a metal binding site on the PS II supramolecular complex. The recombinant cells producing the His‐tagged variant of D2 protein grew photoautotrophically as well as the wild‐type cells. Characterization of the oxygen evolution and the thermoluminescence properties revealed that the His‐tagging did not affect the functional integrity of the PS II reaction center. A PS II core complex was isolated from the detergent‐solubilized thylakoids of the recombinant cells in 4 h by a single one‐step Ni2+ affinity column chromatography. This preparation consists of D1, D2, CP43, CP47, 33 kDa, and a few low molecular weight proteins, and retains a high rate of oxygen‐evolving activity (=1000 μmol/mg Chl/h).
Biochimica et Biophysica Acta | 1998
Jin Xiong; Jun Minagawa; Antony R. Crofts; Govindjee
Formate is known to cause significant inhibition in the electron and proton transfers in photosystem II (PSII); this inhibition is uniquely reversed by bicarbonate. It has been suggested that bicarbonate functions by providing ligands to the non-heme iron and by facilitating protonation of the secondary plastoquinone QB. Numerous lines of evidence indicate an intimate relationship of bicarbonate and formate binding of PSII. To investigate the potential amino acid binding environment of bicarbonate/formate in the QB niche, arginine 257 of the PSII D1 polypeptide in the unicellular green alga Chlamydomonas reinhardtii was mutated into a glutamate (D1-R257E) and a methionine (DQ-R257M). The two mutants share the following characteristics. (1) Both have a drastically reduced sensitivity to formate. (2) A larger fraction of QA- persists after flash illumination, which indicates an altered equilibrium constant of the reaction QA-QB<-->QA QB-, in the direction of [QA-], or a larger fraction of non-QB centers. However, there appears to be no significant difference in the rate of electron transfer from QA- to QB. (3) The overall rate of oxygen evolution is significantly reduced, most likely due to changes in the equilibrium constant on the electron acceptor side of PSII or due to a larger fraction in non-QB centers. Additional effects on the donor side cannot yet be excluded. (4) The binding affinity for the herbicide DCMU is unaltered. (5) The mutants grow photosynthetically, but at a decreased (approximately 70% of the wild type) level. (6) The Fo level was elevated (approximately 40-50%) which could be due to a decrease in the excitation energy transfer from the antenna to the PSII reaction center, and/or to an increased level of [QA-] in the dark. (7) A decreased (approximately 10%) ratio of F685 (mainly from CP43) and F695 (mainly from CP47) to F715 (mainly from PSI) emission bands at 77 K suggests a change in the antenna complex. Taken together these results lead to the conclusion that D1-R257 with the positively charged side chain is important for the fully normal functioning of PSII and of growth, and is specially critical for the in vivo binding of formate. Several alternatives are discussed to explain the almost normal functioning of the D1-R257E and D1-R257M mutants.
Phycologia | 2004
Erika Asamizu; Yasukazu Nakamura; Kenji Miura; Hideya Fukuzawa; Shoko Fujiwara; Masafumi Hirono; Koji Iwamoto; Yoshihiro Matsuda; Jun Minagawa; Kosuke Shimogawara; Yuichiro Takahashi; Satoshi Tabata
Abstract A large-scale analysis of expressed sequence tags (EST) was conducted in a unicellular green alga, Chlamydomonas reinhardtii. To complement the previously published EST sequences obtained from photoautotrophically grown cells and cells under CO2 stress condition, a mixture of cells grown under various stress conditions including light, temperature, salt and limited nutrient was used as a material to construct the complementary DNA library. We have generated 12,842 5′ end sequences from this library, making the collection 50,832 in its entirety. To speed up the data processing step, an internal semiautomatic operation pipeline was constructed. Using this system, quality check of the generated sequences, trimming, and database search for primary annotation was performed. Clustering of the EST sequences by BLAST followed by Phrap has produced 3748 consensus sequences and 7721 singletons. To make this high-quality set of assemblage information as well as clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/chlamy/EST/.
FEBS Letters | 2010
Martin F. Hohmann-Marriott; Kenji Takizawa; Julian J. Eaton-Rye; Laurens Mets; Jun Minagawa
The effect of the plastoquionone (PQ) pool oxidation state on minimum chlorophyll fluorescence was studied in the green alga Chlamydomonas reinhardtii. In wild type and a mutant strain that lacks both photosystems but retains light harvesting complexes, oxygen depletion induced a rise in minimum chlorophyll fluorescence. An increase in minimum fluorescence yield is also observed when the PQ pool becomes reduced in the presence of oxygen and after application of an ionophore that collapses the transmembrane proton gradient. Together these results indicate that minimum chlorophyll fluorescence is modulated by the PQ oxidation state.