Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Miyata is active.

Publication


Featured researches published by Jun Miyata.


Nature Communications | 2013

Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation

Kazuyo Moro; Koichi Fukunaga; Yusuke Suzuki; Jun Miyata; Katsunori Masaki; Tomoko Betsuyaku; Shigeo Koyasu; Koichiro Asano

Type-2 innate immune responses that occur in airways and are accompanied by goblet-cell hyperplasia and mucus production are largely driven by interleukin-33 (IL-33) and natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2s) and the major target of IL-33. Here we report that the corticosteroid resistance observed as a result of airway inflammation triggered by sensitization and exposure to allergen is induced via the IL-33/NH-cell axis. Thymic stromal lymphopoietin (TSLP) synthesized during airway inflammation plays a pivotal role in the induction of NH-cell corticosteroid resistance in vitro and in vivo, by controlling phosphorylation of STAT5 and expression of Bcl-xL in NH cells. Blockade of TSLP with a neutralizing antibody or blocking the TSLP/STAT5 signalling pathway with low molecular-weight STAT5 inhibitors such as pimozide restores corticosteroid sensitivity. Thus, the TSLP-STAT5 pathway could be a new therapeutic target in severe, corticosteroid-resistant asthma.


The Journal of Allergy and Clinical Immunology | 2013

Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma

Jun Miyata; Koichi Fukunaga; Ryo Iwamoto; Yosuke Isobe; Kyoko Niimi; Rina Takamiya; Takahisa Takihara; Katsuyoshi Tomomatsu; Yusuke Suzuki; Tsuyoshi Oguma; Koichi Sayama; Hiroyuki Arai; Tomoko Betsuyaku; Makoto Arita; Koichiro Asano

BACKGROUND Protectin D1 (PD1) is an anti-inflammatory and proresolving lipid mediator biosynthesized from the omega-3 fatty acid docosahexaenoic acid (DHA). Exogenous PD1 conferred protection against eosinophilic inflammation in animals with experimental asthma, although its endogenous cellular source and functions in human airways are of interest. OBJECTIVE We sought to investigate the synthesizing capacity of PD1 in eosinophils from healthy subjects and patients with severe asthma and its direct effects on eosinophil functions. METHODS Human eosinophil-derived metabolites of arachidonic acid and DHA were analyzed with liquid chromatography-tandem mass spectrometry-based lipidomic analysis. The biological activities of PD1 on the function of human eosinophils, including chemotaxis, adhesion molecule expressions, degranulation, superoxide anion generation, or survival, were examined. RESULTS We identified PD1 as one of the main anti-inflammatory and proresolving molecules synthesized in human eosinophils. PD1, in nanomolar concentrations, suppressed the chemotaxis induced by CCL11/eotaxin-1 or 5-oxo-eicosatetraenoic acid and modulated the expression of the adhesion molecules CD11b and L-selectin, although it had no effects on the degranulation, superoxide anion generation, or survival of the eosinophils. Compared with the cells harvested from healthy subjects, we observed a prominent decrease in the biosynthesis of PD1 by eosinophils from patients with severe asthma, even in presence of DHA. CONCLUSION These observations are a first indication that activated human eosinophils represent a major source of PD1, which can act as a self-resolving machinery in eosinophilic inflammation, whereas the production of PD1 is impaired in patients with severe asthma.


COPD: Journal of Chronic Obstructive Pulmonary Disease | 2012

Predictors of Osteoporosis and Vertebral Fractures in Patients Presenting with Moderate-to-Severe Chronic Obstructive Lung Disease

Hiromi Ogura-Tomomatsu; Koichiro Asano; Katsuyoshi Tomomatsu; Jun Miyata; Nao Ohmori; Motohiro Kodama; Soichiro Ueda; Takahisa Takihara; Kyuto Tanaka; Yusuke Suzuki; Koichi Fukunaga; Tsuyoshi Oguma; Koichi Sayama; Tomoko Betsuyaku

Abstract Bone mineral density (BMD) alone does not reliably predict osteoporotic fractures. The Fracture Risk Assessment Tool (FRAX) was developed to estimate the risk of fracture in the general population. This study was designed to identify predictors of osteoporosis and vertebral fractures in patients presenting with chronic obstructive pulmonary disease (COPD). We studied 85 patients (mean age = 75 years; 92% men) with moderate to very severe COPD. Osteoporosis and vertebral fractures were diagnosed with dual energy X-ray absorptiometric scan and vertebral X-rays, respectively. Patient characteristics, including age, gender, body mass index (BMI), and results of pulmonary function tests, chest computed tomography scan, blood and urinary biomarkers of bone turnover were recorded, and a FRAX score was calculated by a computer-based algorithm. Osteoporosis, defined as a T score < –2.5, found in 20 patients (24%), was associated with female gender, BMI, dyspnea scale, long-term oxygen therapy (LTOT), vital capacity (VC), emphysema score on computed tomography, measurements of serum and urinary biomarkers of bone turnover. Vertebral fractures, diagnosed in 29 patients (35%), were strongly correlated with age, LTOT, VC, and forced expiratory volume in 1 sec, treatment with oral corticosteroid or warfarin, and weakly associated with the presence of osteoporosis. There was no correlation between FRAX score and prevalence of vertebral fractures, suggesting that neither BMD alone nor FRAX score would predict the presence of vertebral fractures in COPD patients. A disease-specific algorithm to predict osteoporotic fractures is needed to improve the management of patients suffering from COPD.


Journal of Immunology | 2012

CRTH2 Is A Critical Regulator of Neutrophil Migration and Resistance to Polymicrobial Sepsis

Koichiro Asano; Ho Namkoong; Sadatomo Tasaka; Kosuke Mizoguchi; Takahiro Asami; Hirofumi Kamata; Yoshifumi Kimizuka; Hiroshi Fujiwara; Yohei Funatsu; Shizuko Kagawa; Jun Miyata; Ken Ishii; Masataka Nakamura; Hiroyuki Hirai; Kinya Nagata; Steven L. Kunkel; Naoki Hasegawa; Tomoko Betsuyaku

Although arachidonic acid cascade has been shown to be involved in sepsis, little is known about the role of PGD2 and its newly found receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), on the septic response. Severe sepsis is associated with the failure of neutrophil migration. To investigate whether CRTH2 influences neutrophil recruitment and the lethality during sepsis, sepsis was induced by cecal ligation and puncture (CLP) surgery in mice. CRTH2 knockout (CRTH2−/−) mice were highly resistant to CLP-induced sepsis, which was associated with lower bacterial load and lower production of TNF-α, IL-6, and CCL3. IL-10, an anti-inflammatory cytokine, was higher in CRTH2−/− mice, blunting CLP-induced lethality in CRTH2−/− mice. Neutrophil accumulation in the peritoneum was more pronounced after CLP in CRTH2−/− mice, which was associated with higher CXCR2 levels in circulating neutrophils. Furthermore, sepsis caused a decrease in the level of acetylation of histone H3, an activation mark, at the CXCR2 promoter in wild-type neutrophils, suggesting that CXCR2 expression levels are epigenetically regulated. Finally, both pharmacological depletion of neutrophils and inhibition of CXCR2 abrogated the survival benefit in CRTH2−/− mice. These results demonstrate that genetic ablation of CRTH2 improved impaired neutrophil migration and survival during severe sepsis, which was mechanistically associated with epigenetic-mediated CXCR2 expression. Thus, CRTH2 is a potential therapeutic target for polymicrobial sepsis.


Critical Care Medicine | 2014

Combination Therapy of 15-epi-lipoxin A4 With Antibiotics Protects Mice From escherichia coli –induced Sepsis*

Tomomi Ueda; Koichi Fukunaga; Hiroyuki Seki; Jun Miyata; Makoto Arita; Taku Miyasho; Toru Obata; Koichiro Asano; Tomoko Betsuyaku; Junzo Takeda

Objectives:Inflammation occurs along with infection during sepsis. 15-Epi-lipoxin A4 has protective and resolving effects in experimental models of infection. In this study, we examined the effects of 15-epi-lipoxin A4 combined with antibiotics on Escherichia coli–induced peritonitis. Design:Prospective experimental study. Setting:University research laboratory. Subjects:Male C57BL/6 mice. Interventions:Mice were injected with E. coli to induce peritonitis and were given either 15-epi-lipoxin A4 (1 &mgr;g/mouse) or placebo (saline) with antibiotics (ceftazidime). The effects of 15-epi-lipoxin A4 on peritoneal cell populations, bacterial burden, and cytokine production were assessed. Survival rates were observed for up to 7 days. In addition, we examined the effects of 15-epi-lipoxin A4 on peritoneal macrophages stimulated with lipopolysaccharide, CpG DNA, or live E. coli. Measurements and Main Results:Treatment with 15-epi-lipoxin A4 significantly reduced the number of neutrophils in the peritoneum, inhibited production of cytokines and chemokines, and decreased bacterial load in the serum. Combined treatment of 15-epi-lipoxin A4 with antibiotics significantly improved survival in E. coli–infected mice. 15-Epi-lipoxin A4 also attenuated the production of interleukin-6 and tumor necrosis factor-&agr; by lipopolysaccharide- or CpG DNA-stimulated peritoneal macrophages. Furthermore, 15-epi-lipoxin A4 combined with antibiotics synergistically reduced the production of interleukin-6 and tumor necrosis factor-&agr; by peritoneal macrophages stimulated with live E. coli. Conclusions:15-Epi-lipoxin A4 combined with antibiotics attenuated systemic inflammation, inhibited bacteria dissemination, and improved survival in E. coli–infected mice. The reduced production of interleukin-6 and tumor necrosis factor-&agr; by peritoneal macrophages suggested that 15-epi-lipoxin A4 blocked the initial proinflammatory response. Taken together, these data suggested that 15-epi-lipoxin A4 combined with antibiotics was beneficial in regulating the proinflammatory response in sepsis without exacerbating infection.


International Archives of Allergy and Immunology | 2010

Strain-Specific Phenotypes of Airway Inflammation and Bronchial Hyperresponsiveness Induced by Epicutaneous Allergen Sensitization in BALB/c and C57BL/6 Mice

Motohiro Kodama; Koichiro Asano; Tsuyoshi Oguma; Shizuko Kagawa; Katsuyoshi Tomomatsu; Misa Wakaki; Takahisa Takihara; Soichiro Ueda; Nao Ohmori; Hiromi Ogura; Jun Miyata; Kyuto Tanaka; Koichi Fukunaga; Koichi Sayama; Eiji Ikeda; Taku Miyasho; Akitoshi Ishizaka

Background: Allergen sensitization through a disrupted skin barrier appears to play a prominent role in the development of atopic diseases, including allergic asthma. The role of the genetic background in immunological and physiological phenotypes induced by epicutaneous sensitization is undetermined. Methods: BALB/c and C57BL/6 mice were sensitized either epicutaneously by patch application of ovalbumin (OVA) or systemically by intraperitoneal injection of OVA with alum before exposure to aerosolized OVA. The concentrations of OVA-specific immunoglobulin in serum and cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay. The severity of airway inflammation was evaluated by cell counts in BALF, and bronchial responsiveness to methacholine was measured by the flexiVent system. Results: The production of OVA-specific IgG1 and IgE was greater in the epicutaneously sensitized BALB/c than C57BL/6 mice. In contrast, both eosinophilic airway inflammation and bronchial responsiveness to methacholine were more prominent in the C57BL/6 than in the BALB/c mice. The concentrations of interleukin-4 increased significantly in the BALF from C57BL/6 mice only. No between-strain differences were observed after intraperitoneal sensitization. Conclusions: The C57BL/6 mouse is a more appropriate model than the BALB/c mouse to study the relationship between skin barrier dysfunction and the pathogenesis of allergic asthma.


FEBS Open Bio | 2012

Resolvin E1 maintains macrophage function under cigarette smoke‐induced oxidative stress

Rina Takamiya; Koichi Fukunaga; Makoto Arita; Jun Miyata; Hiroyuki Seki; Naoto Minematsu; Makoto Suematsu; Koichiro Asano

Cigarette smoke (CS) induces oxidative stress, which disables macrophage function. In this study, we examined whether Resolvin E1 (RvE1), a pro‐resolving mediator known to enhance macrophage functions, attenuates the damage of macrophages by CS extract (CSE) induced oxidative stress. RvE1 blocked p47phox translocation to plasma membrane induced by CSE in a macrophage cell line, RAW264.7 cells, resulting in suppression of superoxide production. Furthermore, pretreatment of RAW264.7 cells with RvE1 restored the phagocytic activity and reduced cell death induced by treatment of CSE. These results suggest that RvE1 plays important roles in preserving macrophage function under CS‐induced oxidative stress.


Allergology International | 2014

Dual Role of Interleukin-23 in Epicutaneously-Sensitized Asthma in Mice

Katsunori Masaki; Yusuke Suzuki; Shizuko Kagawa; Motohiro Kodama; Jun Miyata; Kyuto Tanaka; Koichi Fukunaga; Koichi Sayama; Tsuyoshi Oguma; Tokuhiro Kimura; Masayuki Amagai; Tomoko Betsuyaku; Koichiro Asano

BACKGROUND Interleukin (IL)-23/Th17 axis plays an important role in the pathophysiology of asthma and eczema, however, there are some conflicting data about the effects of this system on allergic airway inflammation. In the present study, we aim to dissect the spatiotemporal differences in the roles of IL-23 in an epicutaneously-sensitized asthma model of mice. METHODS C57BL/6 mice were sensitized to ovalbumin (OVA) by patch application on the skin, followed by airway exposure to aerosolized OVA. During sensitization and/or challenge phase, either a specific neutralizing antibody (Ab) against IL-23 or control IgG was injected intraperitoneally. On days 1 and 8 after the final OVA exposure, airway inflammation and responsiveness to methacholine, immunoglobulin levels in serum, and cytokine release from splenocytes were evaluated. Skin Il23a mRNA levels were evaluated with quantitative RT-PCR. RESULTS Patch application time-dependently increased the expression of Il23a mRNA expression in the skin. Treatment with the anti-IL-23 Ab during sensitization phase alone significantly reduced the number of eosinophils in bronchoalveolar lavage fluids and peribronchial spaces after allergen challenge compared with treatment with control IgG. Anti-IL-23 Ab also reduced serum levels of OVA-specific IgG1. In contrast, treatment with the anti-IL-23 Ab during the challenge phase alone rather exacerbated airway hyperresponsiveness to methacholine with little effects on airway eosinophilia or serum IgG1 levels. CONCLUSIONS IL-23 expressed in the skin during the sensitization phase plays an essential role in the development of allergic phenotypes, whereas IL-23 in the airways during the challenge phase suppresses airway hyperresponsiveness.


European Journal of Pharmacology | 2008

TP receptor-mediated release of eosinophil chemotactic activity from human bronchial smooth muscle cells☆

Yusuke Suzuki; Koichiro Asano; Kyoko Niimi; Jun Miyata; Yoshiki Shiraishi; Koichi Fukunaga; Tetsuya Shiomi; Takeshi Nakajima; Tsuyoshi Oguma; Koichi Sayama; Akitoshi Ishizaka

There are reports indicating that thromboxane A(2) receptors (TP receptors) may stimulate the eosinophil accumulation in the lower airways of asthmatics, however, the mechanisms behind such an effect remain unknown. We quantified the synthesis of eosinophil chemotactic activity and eosinophilic CC chemokines, including CCL5, CCL7, CCL8, CCL11, CCL13, CCL24, and CCL26 in primary cultures of human bronchial smooth muscle cells (BSMC) stimulated with a prostanoid TP receptor agonist, IBOP (10(-9)-10(-7) M). The activation of prostanoid TP receptors in BSMC induced the release of potent eosinophil chemoattractant(s) in the presence of interleukin (IL)-4. CCL11/eotaxin-1 was the only synthesis significantly increased by IBOP co-stimulated with IL-4, and pretreatment with an anti-CCL11 antibody abrogated the eosinophil chemotactic activity released from IBOP/IL-4-stimulated BSMC. The effect of IBOP was also completely blocked by pretreatment with a prostanoid TP receptor-specific antagonist, AA-2414. IBOP had no effect on the expression of IL-4 receptor-alpha, or on the IL-4-induced phosphorylation of STAT6 in BSMC. In conclusion, activation of prostanoid TP receptors in a Th2-dominant microenvironment might exacerbate the eosinophilic inflammation of the airways by synthesis and release of CCL11 from BSMC.


Japanese Journal of Clinical Oncology | 2015

A Phase II study of S-1 and irinotecan combination therapy in previously treated patients with advanced non-small cell lung cancer

Shinnosuke Ikemura; Katsuhiko Naoki; Hiroyuki Yasuda; Ichiro Kawada; Satoshi Yoda; Hideki Terai; Takashi Sato; Kota Ishioka; Daisuke Arai; Keiko Ohgino; Hirofumi Kamata; Jun Miyata; Tomoko Betsuyaku; Kenzo Soejima

OBJECTIVE This Phase II study was conducted to evaluate the efficacy and safety of S-1 and irinotecan combination therapy as a second-line treatment in patients with advanced non-small cell lung cancer. METHODS Irinotecan was administered at 60 mg/m(2) on Days 1 and 8. Oral S-1 was administered on Days 1-14 every 3 weeks at 80 mg/day for patients with a body surface area of <1.25 m(2), 100 mg/day for patients with a body surface area of 1.25-1.5 m(2) and 120 mg/day for patients with a body surface area of >1.5 m(2). The primary endpoint was response rate, while the secondary endpoints were progression-free survival, overall survival and safety. RESULTS Thirty-one patients were enrolled in this study. The response and disease control rates were 6.5 and 58.1%, respectively. Progression-free survival and median survival time were 2.8 and 12.6 months, respectively. Grade 3-4 adverse events were reported for 29.0% of the patients. Hematological toxicities of Grade 3 or 4 included leukopenia (9.7%), neutropenia (9.7%), febrile neutropenia (3.2%), thrombopenia (3.2%) and anemia (6.5%). Non-hematological toxicities of Grade 3 or 4 included pneumonitis (6.5%), diarrhea, colitis, dyspnea, rash, oral mucositis, anorexia and pulmonary thromboembolism/deep vein thrombosis (3.2% each). CONCLUSIONS S-1 and irinotecan combination therapy at the present dose and schedule exhibited only modest efficacy with mild toxicities in previously treated patients with non-small cell lung cancer. No further clinical investigation with current dose and schedules is warranted for patients with non-small cell lung cancer who failed first-line platinum-based doublet chemotherapy.

Collaboration


Dive into the Jun Miyata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge