Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Sung Moon is active.

Publication


Featured researches published by Jun Sung Moon.


BMC Oral Health | 2013

Association between diabetes-related factors and clinical periodontal parameters in type-2 diabetes mellitus

Eun-Kyong Kim; Sang Gyu Lee; Youn-Hee Choi; Kyu-Chang Won; Jun Sung Moon; Anwar T. Merchant; Hee-Kyung Lee

BackgroundEvidence consistently shows that diabetes is a risk factor for increased prevalence of gingivitis and periodontitis. But there is a controversy about the relationship between diabetes related factors and periodontal health. The aim of the present study is to explore the relationship between diabetes related factors such as glycosylated hemoglobin, fasting blood glucose, duration of diabetes and compliance to diabetes self management and periodontal health status.MethodsPeriodontal health of 125 participants with type-2 diabetes mellitus was measured by the number of missing teeth, community periodontal index (CPI), Russell’s periodontal index and papillary bleeding index. Information on sociodemographic factors, oral hygiene behavior, duration and compliance to self management of diabetes, levels of glycosylated hemoglobin(HbA1c) and fasting blood glucose(FBG) were collected by interview and hospital medical records. Statistically, independent t-test, an analysis of variance (ANOVA), chi-squared test and multiple regression analyses were used to assess the association between diabetes-related factors and periodontal health.ResultsPeriodontal parameters including the number of missing teeth and papillary bleeding index were significantly influenced by duration of diabetes, FBG and compliance to self management of diabetes. CPI was significantly influenced by duration of diabetes, FBG and HbA1C. And Russell’s periodontal index was significantly influenced by duration of diabetes, FBG, HbA1C and compliance to self management of diabetes. Results of multiple linear regression analysis showed that the duration of diabetes showed significant positive correlation with all of the periodontal health parameters, except for missing teeth. HbA1c was correlated with Russells periodontal and papillary bleeding index. FBG and compliance to self management of diabetes were correlated with missing teeth and papillary bleeding index respectively.ConclusionsDiabetes-related factors such as duration of diabetes, FBG, HbA1c and compliance to self management of diabetes were significantly correlated with periodontal health among individuals with type-2 diabetes.


Journal of Korean Medical Science | 2006

A Protective Role for Heme Oxygenase-1 in INS-1 Cells and Rat Islets that are Exposed to High Glucose Conditions

Kyu Chang Won; Jun Sung Moon; Mi Jung Eun; Ji Sung Yoon; Kyung Ah Chun; Ihn Ho Cho; Yong Woon Kim; Hyoung Woo Lee

Heme oxygenase-1 (HO-1) has been described as an inducible protein that is capable of cytoprotection via radical scavenging and the prevention of apoptosis. Chronic exposure to hyperglycemia can lead to cellular dysfunction that may become irreversible over time, and this process has been termed glucose toxicity. Yet little is known about the relation between glucose toxicity and HO-1 in the islets. The purposes of the present study were to determine whether prolonged exposure of pancreatic islets to a supraphysiologic glucose concentration disrupts the intracellular balance between reactive oxygen species (ROS) and HO-1, and so this causes defective insulin secretion; we also wanted to evaluate a protective role for HO-1 in pancreatic islets against high glucose levels. The intracellular peroxide levels of the pancreatic islets (INS-1 cell, rat islet) were increased in the high glucose media (30 mM glucose or 50 mM ribose). The HO-1 expression was induced in the INS-1 cells by the high glucose levels. Both the HO-1 expression and glucose stimulated insulin secretion (GSIS) was decreased simultaneously in the islets by treatment of the HO-1 antisense. The HO-1 was upregulated in the INS-1 cells by hemin, an inducer of HO-1. And, HO-1 upregulation induced by hemin reversed the GSIS in the islets at a high glucose condition. These results suggest HO-1 seems to mediate the protective response of pancreatic islets against the oxidative stress that is due to high glucose conditions.


Diabetes & Metabolism Journal | 2013

The Role of Skeletal Muscle in Development of Nonalcoholic Fatty Liver Disease

Jun Sung Moon; Ji Sung Yoon; Kyu Chang Won; Hyoung Woo Lee

Background Nonalcoholic fatty liver disease (NAFLD) is closely correlated with abnormal accumulation of visceral fat, but the role of skeletal muscle remains unclear. The aim of this study was to elucidate the role of skeletal muscle in development of NAFLD. Methods Among 11,116 subjects (6,242 males), we examined the effects of skeletal muscle mass and visceral fat area (VFA, by bioelectric impedance analysis) on NAFLD using by the fatty liver index (FLI). Results Of the total subjects (9,565 total, 5,293 males) included, 1,848 were classified as having NALFD (FLI ≥60). Body mass index, lipid profile, fasting plasma glucose, hemoglobin A1c, prevalence of type 2 diabetes (DM), hypertension (HTN), and metabolic syndrome were higher in males than females, but FLI showed no significant difference. The low FLI group showed the lowest VFA and highest skeletal muscle mass of all the groups. Skeletal muscle to visceral fat ratio (SVR) and skeletal muscle index had inverse correlations with FLI, when adjusted for age and gender. In multivariate regression analysis, SVR was negatively associated with FLI. Among SVR quartiles, the highest quartile showed very low risk of NAFLD when adjusted for age, gender, lipid profile, DM, HTN, and high sensitivity C-reactive protein from the lowest quartiles (odds ratio, 0.037; 95% confidence interval, 0.029 to 0.049). Conclusion Skeletal muscle mass was inversely associated with visceral fat area, and higher skeletal muscle mass may have a beneficial effect in preventing NAFLD. These results suggest that further studies are needed to ameliorate or slow the progression of sarcopenia.


Journal of Diabetes and Its Complications | 2017

Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic beta cells

Jun Sung Moon; Udayakumar Karunakaran; Suma Elumalai; In-Kyu Lee; Hyoung Woo Lee; Yong-Woon Kim; Kyu Chang Won

AIM/HYPOTHESIS Cluster determinant 36 (CD36), a fatty acid transporter, was reported to have a pivotal role in glucotoxicity-induced beta cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression, and it is unknown whether this action can be counteracted by metformin. In the present study, we showed that metformin counteracts glucotoxicity by alleviating oxidative and endoplasmic reticulum (ER) stress-induced CD36 expression. METHODS We used primary rat islets as well as INS-1 cells for 72h to 24h with 30mM glucose, respectively. Thapsigargin was used as strong ER stressor, and Sulfo-N-succinimidyl oleate (SSO) and RNA interference were chosen for CD36 inhibition. Free fatty acid uptake was measured by radioisotope tracing technique. RESULTS Exposure of isolated rat islets to high glucose (HG) for 3days decreased insulin and pancreatic duodenal homeobox1 (Pdx1) mRNA expression, with the suppression of glucose-stimulated insulin secretion (GSIS) along with elevation of reactive oxygen species (ROS) levels. Incubation with metformin restored insulin and Pdx1 mRNA expression with significant improvements in GSIS and decrease in ROS production. HG exposure in INS-1 cells increased free fatty acid uptake via induction of CD36 along with impaired insulin and Pdx1 mRNA expression. Moreover, thapsigargin also increased the induction of CD36 expression. Metformin blocked HG- and thapsigargin-induced CD36 expression. In addition, the simultaneous inhibition of intracellular ROS production by metformin or CD36 activation by SSO or CD36 siRNA significantly decreased the apoptotic response in HG-treated INS-1 cells. CONCLUSION/INTERPRETATION In conclusion, metformin conferred protection against HG-induced apoptosis of pancreatic beta cells, largely by interfering with ROS production, and inhibited the CD36-mediated free fatty acid influx. This report provides evidence that the inhibition of CD36 may have potential therapeutic effects against hyperglycemia-induced beta cell damage in diabetes.


Biochemical and Biophysical Research Communications | 2012

Inhibition of fatty acid translocase cluster determinant 36 (CD36), stimulated by hyperglycemia, prevents glucotoxicity in INS-1 cells.

Yong-Woon Kim; Jun Sung Moon; Ye Jin Seo; So-Young Park; Jong-Yeon Kim; Ji Sung Yoon; In-Kyu Lee; Hyoung Woo Lee; Kyu Chang Won

The purpose of the present study was to determine whether exposure of pancreatic islets to glucotoxic conditions changes fatty acid translocase cluster determinant 36 (CD36) and examine the role of CD36 on the induction of glucotoxicity. We measured the changes of CD36 and insulin secretion in high glucose (30 mM) exposed INS-1 cells and CD36 suppressed INS-1 cells by transfection of CD36 siRNA. The intracellular peroxide level of INS-1 cells increased in the high glucose media compared to normal glucose (5.6mM) media. The mRNA levels of insulin and PDX-1, as well as glucose stimulated insulin secretion (GSIS) were decreased in INS-1 cells exposed to high glucose media compared to normal glucose media, while CD36 and palmitate uptake were significantly elevated with exposure to high glucose media for 12h. The inhibition of CD36 reversed the decreased GSIS and intracellular peroxide level in INS-1 cells. These results suggest that high glucose may exacerbate glucotoxicity via increasing fatty acid influx by elevation of CD36 expression, and that CD36 may be a possible target molecule for preventing glucotoxicity in pancreatic beta-cells.


Diabetes & Metabolism Journal | 2013

The Relationship between Metformin and Cancer in Patients with Type 2 Diabetes

Hyun Hee Chung; Jun Sung Moon; Ji Sung Yoon; Hyoung Woo Lee; Kyu Chang Won

Background Recently, several studies reported that the cancer incidence in type 2 diabetes patients is higher than in the general population. Although a number of risks are shared between cancer and diabetes patients, there have been few studies of its correlation. We evaluated the influences of several factors including low density lipoprotein cholesterol (LDL-C), albuminuria and use of metformin on the risk of cancer in patients with type 2 diabetes. Methods We enrolled 1,320 patients with at least 5 years of follow-up and 73 patients were diagnosed with cancer during this period. The associations of the risk factors with cancer incidence were evaluated by multiple regression analysis. The subjects were placed into two subgroups based on metformin dosage (<1,000 mg/day, ≥1,000 mg/day) and we compared cancer incidence using analysis of covariance. Results LDL-C and albuminuria were not significantly correlated with cancer risk. In contrast, metformin showed a reverse correlation with cancer risk (P=0.006; relative risk, 0.574). In the metformin nonadministration group, smoking, male gender, and high triglyceride levels tended to be contributing factors without statistical significance. Cancer occurence was lower in the low dose metformin group (less than 1,000 mg/day) (P=0.00). Conclusion These results suggest that the administration of low dose metformin in patients with type 2 diabetes may be associated with a reduced risk of cancer.


Diabetes & Metabolism Journal | 2013

Diagnostic Accuracy of 64-Slice MDCT Coronary Angiography for the Assessment of Coronary Artery Disease in Korean Patients with Type 2 Diabetes

Jun Sung Moon; Ji Sung Yoon; Kyu Chang Won; Ihn-Ho Cho; Hyoung Woo Lee

Background A 64-slice multidetector computed tomography (MDCT) is well known to be a useful noninvasive form of angiography for the general population, but not for certain patients with diabetes. The aim of this study was to investigate the diagnostic accuracy and usefulness of 64-slice MDCT coronary angiography for detecting coronary artery disease in Korean patients with type 2 diabetes mellitus (T2DM). Methods A total of 240 patients were included, 74 of whom had type 2 diabetes (M:F=40:33; 41.8±9.5 years). We compared significant coronary stenosis (>50% luminal narrowing) in MDCT with invasive coronary angiography (ICA) by segment, artery, and patient. We also evaluated the influence of obesity and coronary calcium score on MDCT accuracy. Results Of the 4,064 coronary segments studied, 4,062 segments (T2DM=1,109) were assessed quantitatively by both MDCT and ICA, and 706 segments (T2DM=226) were detected as a significant lesion by ICA in all patients. Sensitivity, specificity, as well as positive and negative predictive values for the presence of significant stenosis in T2DM were: by segment, 89.4%, 96.4%, 85.8%, and 97.4%, respectively; by artery (n=222), 95.1%, 92.9%, 94.4%, and 93.8%, respectively; by patients (n=74), 98.4%, 100.0%, 98.4%, and 90.0%, respectively. Regardless of presence of diabetes, there was no significant difference in diagnostic accuracy. Obesity (≥25 kg/m2) and coronary calcium score did not also affect the diagnostic accuracy of MDCT. Conclusion The 64-slice MDCT coronary angiography was found to have similar diagnostic accuracy with ICA, regardless of diabetes. These results suggest MDCT may be helpful to reduce unnecessary invasive studies for patients with diabetes.


Redox biology | 2017

Rac1-NADPH oxidase signaling promotes CD36 activation under glucotoxic conditions in pancreatic beta cells

Suma Elumalai; Udayakumar Karunakaran; In-Kyu Lee; Jun Sung Moon; Kyu Chang Won

We recently reported that cluster determinant 36 (CD36), a fatty acid transporter, plays a pivotal role in glucotoxicity-induced β-cell dysfunction. However, little is known about how glucotoxicity influences CD36 expression. Emerging evidence suggests that the small GTPase Rac1 is involved in the pathogenesis of beta cell dysfunction in type 2 diabetes (T2D). The primary objective of the current study was to determine the role of Rac1 in CD36 activation and its impact on β-cell dysfunction in diabetes mellitus. To address this question, we subjected INS-1 cells and human beta cells (1.1B4) to high glucose conditions (30 mM) in the presence or absence of Rac1 inhibition either by NSC23766 (Rac1 GTPase inhibitor) or small interfering RNA. High glucose exposure in INS-1 and human beta cells (1.1b4) resulted in the activation of Rac1 and induced cell apoptosis. Rac1 activation mediates NADPH oxidase (NOX) activation leading to elevated ROS production in both cells. Activation of the Rac1-NOX complex by high glucose levels enhanced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. The inhibition of Rac1 by NSC23766 inhibited NADPH oxidase activity and ROS generation induced by high glucose concentrations in INS-1 & human 1.1b4 beta cells. Inhibition of Rac1-NOX complex activation by NSC23766 significantly reduced CD36 expression in INS-1 and human 1.1b4 beta cell membrane fractions. In addition, Rac1 inhibition by NSC23766 significantly reduced high glucose-induced mitochondrial dysfunction. Furthermore, NADPH oxidase inhibition by VAS2870 also attenuated high glucose-induced ROS generation and cell apoptosis. These results suggest that Rac1-NADPH oxidase dependent CD36 expression contributes to high glucose-induced beta cell dysfunction and cell death.


Biochimica et Biophysica Acta | 2015

CD36 initiated signaling mediates ceramide-induced TXNIP expression in pancreatic beta-cells.

Udayakumar Karunakaran; Jun Sung Moon; Hyoung Woo Lee; Kyu Chang Won

Diverse mechanisms are involved in the pathogenesis of β-cell failure in type 2 diabetes. Of them, the accumulation of ceramide, a bioactive lipid metabolite, is suggested to play a major role in inflammatory and stress responses that induce diabetes. However, the downstream inflammatory target of ceramide has not been defined. Using rat islets and the INS-1 β-cell line, we hypothesized that activation of the redox sensitive protein TXNIP is involved in ceramide-induced β-cell dysfunction. Incubation of INS-1 cells and primary islets with C2-ceramide (N-acetyl-sphingosine) downregulated insulin and PDX-1 expression and increased β-cell apoptosis. Ceramide treatment induced a time dependent increase in TXNIP gene expression accompanied by activation of nuclear factor (NF)-κB and reduced mitochondrial thioredoxin (TRX) activity. Pretreatment with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked ceramide-induced up-regulation of TXNIP expression and activity of NF-κB. Blockade of NF-κB nuclear translocation by the peptide SN50 prevented ceramide-mediated TXNIP induction. Furthermore, SSO also attenuated ceramide-induced early loss of insulin signaling and apoptosis. Collectively, our results unveil a novel role of CD36 in early molecular events leading to NF-κB activation and TXNIP expression. These data suggest that CD36 dependent NF-κB-TXNIP signaling contributes to the ceramide-induced pathogenesis of pancreatic β-cell dysfunction and failure.


Endocrinology and Metabolism | 2013

Variation in Serum Creatinine Level Is Correlated to Risk of Type 2 Diabetes

Jun Sung Moon; Ji Eun Lee; Ji Sung Yoon

Background Skeletal muscle is well established as a major target organ of insulin action, and is associated with the pathogenesis of type 2 diabetes. Therefore, we attempted to determine whether a variation in serum creatinine is related to the development of type 2 diabetes and other risk factors for diabetes. Methods A total of 2,676 nondiabetic subjects with stable and normal renal function (estimated glomerular filtration rate >60 mL/min/1.73 m2) were followed up for approximately 4.5 years. New onset diabetes was defined as fasting plasma glucose (FPG) ≥7.0 mmol/L, glycated hemoglobin (HbA1c) ≥6.5%, or subjects taking antidiabetic agents. Variation of serum creatinine (ΔCre) was defined as a difference between follow-up and baseline creatinine. In subgroup analysis, body composition was examined by bioelectric impedance analysis method. Results A total of 106 subjects were diagnosed with new-onset diabetes during the follow-up period. Baseline serum creatinine was not different between the new-onset diabetes and no diabetes groups. Negative ΔCre (ΔCre <0) showed an association with increased risk of type 2 diabetes after adjusting for age, sex, body mass index, systolic blood pressure, FPG, HbA1c, triglyceride, high density lipoprotein cholesterol, and γ-glutamyl transpeptidase (odds ratio, 1.885; 95% confidence interval, 1.127 to 3.153). Serum creatinine level demonstrated positive correlation with muscle mass and negative correlation with percentage of body fat in body composition analysis. Conclusion Serum creatinine reflected body muscle mass and the decrease of serum creatinine might be regarded as a risk factor for type 2 diabetes.

Collaboration


Dive into the Jun Sung Moon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

In-Kyu Lee

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge