Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Young Kwon is active.

Publication


Featured researches published by Jun-Young Kwon.


Plant Physiology | 2013

Elucidating rice cell metabolism under flooding and drought stresses using flux-based modeling and analysis.

Meiyappan Lakshmanan; Zhaoyang Zhang; Bijayalaxmi Mohanty; Jun-Young Kwon; Hong-Yeol Choi; Hyung-Jin Nam; Dong-Il Kim; Dong-Yup Lee

A metabolic/regulatory network of rice incorporates two important tissue types, germinating seeds and photorespiring leaves, is validated through experiments with rice suspension cultures, and applied to analyze metabolic capability under flooding and drought conditions. Rice (Oryza sativa) is one of the major food crops in world agriculture, especially in Asia. However, the possibility of subsequent occurrence of flood and drought is a major constraint to its production. Thus, the unique behavior of rice toward flooding and drought stresses has required special attention to understand its metabolic adaptations. However, despite several decades of research investigations, the cellular metabolism of rice remains largely unclear. In this study, in order to elucidate the physiological characteristics in response to such abiotic stresses, we reconstructed what is to our knowledge the first metabolic/regulatory network model of rice, representing two tissue types: germinating seeds and photorespiring leaves. The phenotypic behavior and metabolic states simulated by the model are highly consistent with our suspension culture experiments as well as previous reports. The in silico simulation results of seed-derived rice cells indicated (1) the characteristic metabolic utilization of glycolysis and ethanolic fermentation based on oxygen availability and (2) the efficient sucrose breakdown through sucrose synthase instead of invertase. Similarly, flux analysis on photorespiring leaf cells elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol malate transporters in recycling the ammonia liberated during photorespiration and in exporting the excess redox cofactors, respectively. The model simulations also unraveled the essential role of mitochondrial respiration during drought stress. In the future, the combination of experimental and in silico analyses can serve as a promising approach to understand the complex metabolism of rice and potentially help in identifying engineering targets for improving its productivity as well as enabling stress tolerance.


Biotechnology and Bioengineering | 2013

Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures

Jun-Young Kwon; Yong-Suk Yang; Su-Hwan Cheon; Hyung-Jin Nam; Gi-Hong Jin; Dong-Il Kim

Two kinds of disposable bioreactors, air‐lift disposable bioreactors (ADB) and wave disposable bioreactors (WDB) were compared with stirred‐tank reactors (5‐L STR). These bioreactors were successfully applied to transgenic rice cell cultures for the production of recombinant human cytotoxic T‐lymphocyte antigen 4‐immunoglobulin (hCTLA4Ig). In both systems, a fed‐batch culture method was used to produce hCTLA4Ig efficiently by feeding concentrated amino acids and production levels were enhanced when dissolved oxygen (DO) level was regulated at 30% using pure oxygen sparging. Agitation and aeration rate during cultivation in ADB and WDB were determined by the same mixing time. The results in both disposable bioreactors showed similar values in maximum cell density (11.9 gDCW/L and 12.6 gDCW/L), doubling time (4.8‐ and 5.0‐day), and maximum hCTLA4Ig concentration (43.7 and 43.3 mg/L). Relatively higher cell viability was sustained in the ADB whereas hCTLA4Ig productivity was 1.2‐fold higher than that in WDB. The productivity was improved by increasing aeration rate (0.2 vvm). Overall, our experiments demonstrate pneumatically driven disposable bioreactors are applicable for the production of recombinant proteins in plant cell cultures. These results will be useful for development and scale‐up studies of disposable bioreactor systems for transgenic plant cell cultures. Biotechnol. Bioeng. 2013; 110:2412–2424.


Biotechnology and Bioprocess Engineering | 2014

Biosimilars: Challenges and path forward

Young Sik Kim; Byung Wook Choi; Sung Wook Yang; Seon Mi Shin; Sang Wook Nam; Yun Sook Roh; Jae Young Lee; Kyung Jin Lee; Jun-Young Kwon; Dong-Il Kim

Development of biosimilar proteins is the fastest growing sector in the biopharmaceutical industry, as patents for the top 10 best-selling biologics will expire within one decade. The world’s first biosimilar of infliximab, Remsima® (CT-P13) made by Celltrion, was approved by the Committee for Medicinal Products for Human Use (CHMP) of European Medicine Agency (EMA) in June 2013. This has ignited competition between related companies for prior occupation of the global market on blockbuster biologics. However, to achieve approval for biosimilars, developing companies face many hurdles in process development, manufacturing, analysis, clinical trials, and CMC (chemical, manufacturing and controls) documentation. Recent evolutionary progress in science, engineering, and process technology throughout the biopharmaceutical industry supports to show similarity between originator and biosimilar products. The totality of evidence has been able to demonstrate the quality, efficacy, and safety of biosimilars whereas a lack of interchangeability and international standards has to be addressed. Further understanding of the timing importance by regulatory agencies will be key to maximizing the value of biosimilars.


Biotechnology and Bioprocess Engineering | 2007

Increased hGM-CSF production and secretion with Pluronic F-68 in transgenicNicotiana tabacum suspension cell cultures

Jong-Moon Cho; Jun-Young Kwon; Jung-Ae Lim; Dong-Il Kim

The effects of Pluronic F-68, a nonionic surfactant, on the production and secretion of human granulocyte-macrophage colony-stimulating factor (hGM-CSF) in a transgenicNicotiana tabacum cell suspension culture were investigated in this study. The addition of Pluronic F-68 was shown to extend cell survival in the stationary phase, but had no influence on effective initial cell growth. With regard to production, it increased the level of extracellular hGM-CSF two-fold. This may be attributable not only to the enhanced expression level, but also to the improved permeability of the cell membrane due to the interaction between Pluronic F-68 and the cell membrane and cell wall. The effect of Pluronic F-68 on the production and secretion of hGM-CSF in a bioreactor was also evaluated. hGM-CSF production in the bioreactor after the addition of Pluronic F-68 proved more effective than in flask cultures.


Journal of Plant Biotechnology | 2009

Production of biopharmaceuticals in transgenic plant cell suspension cultures

Jun-Young Kwon; Su-Hwan Cheon; Hye-Ran Lee; Ji-Yeon Han; Dong-Il Kim

Abstract Transgenic plant cell cultures for the production of biopharmaceuticals including monoclonal antibodies, recombinant proteins have been regarded as an alternative platform in addition to traditional microbial fermentation and mammalian cell cultures. Plant-made pharmaceuticals (PMPs) have several advantages such as safety, cost-effec-tiveness, scalability and possibility of complex post-trans-lational modifications. Increasing demand for the quantity and diversity of pharmaceutical proteins may accelerate the industrialization of PMP technology. Up to date, there is no plant-made recombinant protein approved by USFDA (Food and Drug Administration) for human therapeutic uses due to the technological bottlenecks of low expression level and slight differences in glycosylation. Regarding expression levels, it is possible to improve the productivity by using stronger promoter and optimizing culture processes. In terms of glycosylation, humanization has been attempted in many ways to reduce immune responses and to enhance the efficacy as well as stability. In this review article, all these respects of transgenic plant cell cultures were summarized. In addition, we also discuss the general characteristics of plant cell suspension cultures related with bioreactor design and operation to achieve high productivity in large scale which could be a key to successful commercialization of PMPs.


Enzyme and Microbial Technology | 2012

Application of anoxia with glucose addition for the enhanced production of hCTLA4Ig in transgenic rice suspension cell cultures

Jun-Young Kwon; Kyoung-Hoon Lee; Su-Hwan Cheon; Dong-Il Kim

To enhance the production of hCTLA4Ig in transgenic rice suspension cell cultures, anoxic conditions were applied during the production phase. Under the anoxic conditions in sugar-depleted media, cell viability was reduced rapidly and protease activity increased compared to aerobic conditions. However, the maximum production level of hCTLA4Ig with sugar-depleted anoxic conditions was the same as that in aerobic conditions. In addition, the production of hCTLA4Ig under anoxic conditions reached a peak 2 days earlier than that in aerobic conditions. Addition of 30 mM glucose at the production phase under anoxic conditions markedly improved cell viability. A viability level over 65% could be maintained for more than 30 days. Repression of the RAmy3D promoter by residual sugar in the production of hCTLA4Ig was not observed under anoxic conditions with 30 mM glucose. In addition, the production periods of hCTLA4Ig was extended up to 30 days and the maximum production level of hCTLA4Ig under anoxic conditions was 2.1-fold higher. Therefore, anoxic conditions could be used for the enhanced production of hCTLA4Ig in transgenic rice cell cultures.


Enzyme and Microbial Technology | 2013

Assessment of long-term cryopreservation for production of hCTLA4Ig in transgenic rice cell suspension cultures.

Jun-Young Kwon; Sun-Hee Jeong; Ji-Won Choi; Yun-Young Pak; Dong-Il Kim

For the commercialization of plant-made pharmaceuticals (PMPs) using transgenic plant cell cultures, the establishment of a cell-banking system has been known to be an essential process. Plant cells are traditionally maintained by repeated subcultures. However, this method has several problems including genetic instability of transformed cell lines, time- and cost-consuming. In this study, long-term cryopreserved rice suspension cells were firstly investigated for the production of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig). The cryopreserved cells for 5 years were regrowed to callus successfully and then suspended into the liquid medium. Consequently, the maximum cell mass and the hCTLA4Ig production were similar levels compared to those of the non-cryopreserved cells (control) even though hCTLA4Ig productivity was 1.7-fold higher than that of control. To further assess the level of improvements in hCTLA4Ig productivity in cryopreserved cells, hCTLA4Ig production profiles were statistically assessed between data of the cryopreserved cells for 5 years and annual data of non-cryopreserved cells maintained by subculture for 5 years. These results also indicate that hCTLA4Ig productivity in cryopreserved cells for 5 years was significantly increased (p-value: <0.001, 95% confidence interval) and it could be related to cell lysis resulting in release of hCTLA4Ig which was confirmed by the measurement of electrolyte leakage. In conclusion, we show that the long-term cryopreservation of transgenic rice cells was possible to support stable cell lines for the production of PMPs.


Scientific Reports | 2018

N-glycan Remodeling Using Mannosidase Inhibitors to Increase High-mannose Glycans on Acid α-Glucosidase in Transgenic Rice Cell Cultures

Hong-Yeol Choi; Heajin Park; Jong Kwang Hong; Sun-Dal Kim; Jun-Young Kwon; SeungKwan You; Jonghye Do; Dong-Yup Lee; Ha Hyung Kim; Dong-Il Kim

Glycoengineering of plant expression systems is a prerequisite for the production of biopharmaceuticals that are compatible with animal-derived glycoproteins. Large amounts of high-mannose glycans such as Man7GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 (Man7/8/9), which can be favorably modified by chemical conjugation of mannose-6-phosphate, are desirable for lysosomal enzyme targeting. This study proposed a rice cell-based glycoengineering strategy using two different mannosidase inhibitors, kifunensine (KIF) and swainsonine (SWA), to increase Man7/8/9 glycoforms of recombinant human acid α-glucosidase (rhGAA), which is a therapeutic enzyme for Pompe disease. Response surface methodology was used to investigate the effects of the mannosidase inhibitors and to evaluate the synergistic effect of glycoengineering on rhGAA. Both inhibitors suppressed formation of plant-specific complex and paucimannose type N-glycans. SWA increased hybrid type glycans while KIF significantly increased Man7/8/9. Interestingly, the combination of KIF and SWA more effectively enhanced synthesis of Man7/8/9, especially Man9, than KIF alone. These changes show that SWA in combination with KIF more efficiently inhibited ER α-mannosidase II, resulting in a synergistic effect on synthesis of Man7/8/9. In conclusion, combined KIF and SWA treatment in rice cell culture media can be an effective method for the production of rhGAA displaying dominantly Man7/8/9 glycoforms without genetic manipulation of glycosylation.


Journal of Microbiology and Biotechnology | 2009

Enhanced Delivery of siRNA Complexes by Sonoporation in Transgenic Rice Cell Suspension Cultures

Su-Hwan Cheon; Kyoung-Hoon Lee; Jun-Young Kwon; Sung-Hun Choi; Mi-Na Song; Dong-II Kim


Plant Cell Reports | 2012

Adsorptive loss of secreted recombinant proteins in transgenic rice cell suspension cultures

Jun-Young Kwon; Kyoung-Hoon Lee; Su-Hwan Cheon; Hyun-Nam Ryu; Sun Jin Kim; Dong-Il Kim

Collaboration


Dive into the Jun-Young Kwon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge