Junaith S. Mohamed
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junaith S. Mohamed.
Journal of Biological Chemistry | 2010
Junaith S. Mohamed; Michael A. Lopez; Aladin M. Boriek
Airway smooth muscle hypertrophy is one of the hallmarks of airway remodeling in severe asthma. Several human diseases have been now associated with dysregulated microRNA (miRNA) expression. miRNAs are a class of small non-coding RNAs, which negatively regulate gene expression at the post-transcriptional level. Here, we identify miR-26a as a hypertrophic miRNA of human airway smooth muscle cells (HASMCs). We show that stretch selectively induces the transcription of miR-26a located in the locus 3p21.3 of human chromosome 3. The transcription factor CCAAT enhancer-binding protein α (C/EBPα) directly activates miR-26a expression through the transcriptional machinery upon stretch. Furthermore, stretch or enforced expression of miR-26a induces HASMC hypertrophy, and miR-26 knockdown reverses this effect, suggesting that miR-26a is a hypertrophic gene. We identify glycogen synthase kinase-3β (GSK-3β), an anti-hypertrophic protein, as a target gene of miR-26a. Luciferase reporter assays demonstrate that miR-26a directly interact with the 3′-untranslated repeat of the GSK-3β mRNA. Stretch or enforced expression of miR-26a attenuates the endogenous GSK-3β protein levels followed by the induction of HASMC hypertrophy. miR-26 knockdown reverses this effect, suggesting that miR-26a-induced hypertrophy occurs via its target gene GSK-3β. Overall, as a first time, our study unveils that miR-26a is a mechanosensitive gene, and it plays an important role in the regulation of HASMC hypertrophy.
Diabetes | 2014
Junaith S. Mohamed; Ameena Hajira; Patricia S. Pardo; Aladin M. Boriek
High-fat diet (HFD) plays a central role in the initiation of mitochondrial dysfunction that significantly contributes to skeletal muscle metabolic disorders in obesity. However, the mechanism by which HFD weakens skeletal muscle metabolism by altering mitochondrial function and biogenesis is unknown. Given the emerging roles of microRNAs (miRNAs) in the regulation of skeletal muscle metabolism, we sought to determine whether activation of a specific miRNA pathway would rescue the HFD-induced mitochondrial dysfunction via the sirtuin-1 (SIRT-1)/ peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) pathway, a pathway that governs genes necessary for mitochondrial function. We here report that miR-149 strongly controls SIRT-1 expression and activity. Interestingly, miR-149 inhibits poly(ADP-ribose) polymerase-2 (PARP-2) and so increased cellular NAD+ levels and SIRT-1 activity that subsequently increases mitochondrial function and biogenesis via PGC-1α activation. In addition, skeletal muscles from HFD-fed obese mice exhibit low levels of miR-149 and high levels of PARP-2, and they show reduced mitochondrial function and biogenesis due to a decreased activation of the SIRT-1/PGC-1α pathway, suggesting that mitochondrial dysfunction in the skeletal muscle of obese mice may be because of, at least in part, miR-149 dysregulation. Overall, miR-149 may be therapeutically useful for treating HFD-induced skeletal muscle metabolic disorders in such pathophysiological conditions as obesity and type 2 diabetes.
Journal of Biological Chemistry | 2011
Patricia S. Pardo; Junaith S. Mohamed; Michael A. Lopez; Aladin M. Boriek
Mechanical loading of muscles by intrinsic muscle activity or passive stretch leads to an increase in the production of reactive oxygen species (1, 2). The NAD-dependent protein deacetylase SIRT1 is involved in the protection against oxidative stress by enhancing FOXO-driven Sod2 transcription (3–5). In this report, we unravel a mechanism triggered by mechanical stretch of skeletal muscle cells that leads to an EGR1-dependent transcriptional activation of the Sirt1 gene. The resulting transient increase in SIRT1 expression generates an antioxidative response that contributes to reactive oxygen species scavenging.
Frontiers in Aging Neuroscience | 2014
Stephen E. Alway; Matthew J. Myers; Junaith S. Mohamed
The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.
PLOS ONE | 2013
Brian T. Bennett; Junaith S. Mohamed; Stephen E. Alway
Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic benefits for improving muscle mass after disuse in aging.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2010
Junaith S. Mohamed; Aladin M. Boriek
Transforming growth factor-beta1 (TGF-beta1) expression in smooth muscle cells may play an important role in the pathogenesis of asthma. However, mechanisms that are involved in the regulation of TGF-beta1 gene expression in human airway smooth muscle cells (HASMCs) remain elusive. Here, we show that mechanical stretch of HASMCs augmented TGF-beta1 expression through a de novo RNA synthesis mechanism. Luciferase reporter assays revealed that stretch-induced TGF-beta1 expression was mediated through the enhanced activation of TGF-beta1 promoter. Interestingly, selective inhibitors of PTK, PI3K, or MEK1/2 attenuated TGF-beta1 expression through blocking ERK1/2 phosphorylation and TGF-beta1 promoter activity in response to stretch. In addition, stretch rapidly and transiently augmented GTP-bound RhoA and Rac1 but not Cdc42 GTPase. Either blockade of RhoA GTPase using C3 transferase, ROCK1/2 using Y27632, or knockdown of endogenous RhoA using RhoA siRNA attenuated stretch-induced TGF-beta1 expression through the inhibition of ERK1/2 phosphorylation. Moreover, stretch augmented DNA binding activity of AP-1 in a time-dependent manner. Either treatment of HASMCs with the inhibitors of RhoA, ROCK1/2, PTK, PI3K, MEK1/2, or AP-1 or transfection of HASMCs with AP-1 decoy oligonucleotide attenuated stretch-induced TGF-beta1 expression through repressing the DNA binding activity of AP-1. Site-directed mutagenesis demonstrated that two AP-1 binding sites in the TGF-beta1 promoter region are responsible for stretch-induced TGF-beta1 expression. Overall, in HASMCs, mechanical stretch plays an important role in TGF-beta1 gene upregulation through a stretch-induced signaling pathway, which could be a potential therapeutic intervention for TGF-beta1-induced pathogenesis in asthma.
The FASEB Journal | 2010
Junaith S. Mohamed; Michael A. Lopez; Gregory A. Cox; Aladin M. Boriek
The diaphragm muscles in vivo are subjected to mechanical forces both in the direction of the muscle fibers and in the direction transverse to the fibers. However, the effect of directional mechanical forces in skeletal muscle gene regulation is completely unknown. Here, we identified that stretch in the longitudinal and transverse directions to the diaphragm muscle fibers up‐regulated Ankrd2 gene expression by two distinct signaling pathways in wild‐type (WT) and mdm, a mouse model of muscular dystrophy with early‐onset of progressive muscle‐wasting. Stretch in the longitudinal direction activated both NF‐κB and AP‐1 transcription factors, whereas stretch in the transverse direction activated only AP‐1 transcription factor. Interestingly, longitudinal stretch activated Ankrd2 promoter only by NF‐κB, whereas transverse stretch activated Ankrd2 promoter by AP‐1. Moreover, we found that longitudinal stretch activated Akt, which up‐regulated Ankrd2 expression through NF‐κB. However, transverse stretch activated Ras‐GTP, Raf‐1, and Erk1/2 proteins, which up‐regulated Ankrd2 expression through AP‐1. Surprisingly, the stretch‐activated NF‐κB and AP‐1 signaling pathways was not involved in Ankrd2 regulation at the basal level, which was high in the mdm mouse diaphragm. Taken together, our data show the anisotropic regulation of Ankrd2 gene expression in the diaphragm muscles of WT and mdm mice via two distinct mechanosensitive signaling pathways.—Mohamed, J. S., Lopez, M. A., Cox, G. A., Boriek, A. M. Anisotropic regulation of Ankrd2 gene expression in skeletal muscle by mechanical stretch. FASEB J. 24, 3330–3340 (2010). www.fasebj.org
Oncogene | 2016
Cristian Coarfa; Warren Fiskus; Vijay Kumar Eedunuri; Kimal Rajapakshe; Christopher Foley; Sue Anne Chew; Shrijal S. Shah; Chuandong Geng; John Shou; Junaith S. Mohamed; Bert W. O'Malley; Nicholas Mitsiades
MicroRNAs are important epigenetic regulators of protein expression by triggering degradation of target mRNAs and/or inhibiting their translation. Dysregulation of microRNA expression has been reported in several cancers, including prostate cancer (PC). We comprehensively characterized the proteomic footprint of a panel of 12 microRNAs that are potently suppressed in metastatic PC (SiM-miRNAs: miR-1, miR-133a, miR-133b, miR-135a, miR-143-3p, miR-145-3p, miR-205, miR-221-3p, miR-221-5p, miR-222-3p, miR-24-1-5p, and miR-31) using reverse-phase proteomic arrays. Re-expression of these SiM-miRNAs in PC cells suppressed cell proliferation and targeted key oncogenic pathways, including cell cycle, apoptosis, Akt/mammalian target of rapamycin signaling, metastasis and the androgen receptor (AR) axis. However, only 12%, at most, of these observed protein expression changes could be explained by predicted direct binding of miRNAs to corresponding mRNAs, suggesting that the majority of these proteomic effects result indirectly. AR and its steroid receptor coactivators (SRCs; SRC-1, -2 and -3) were recurrently affected by these SiM-miRNAs. In agreement, we identified inverse correlations between expression of these SiM-miRNAs and early clinical recurrence, as well as with AR transcriptional activity in human PC tissues. We also identified robust induction of miR-135a by androgen and strong direct binding of AR to the miR-135a locus. As miR-135a potently suppresses AR expression, this results in a negative feedback loop that suppresses AR protein expression in an androgen-dependent manner, while de-repressing AR expression upon androgen deprivation. Our results demonstrate that epigenetic silencing of these SiM-miRNAs can result in increased AR axis activity and cell proliferation, thus contributing to disease progression. We further demonstrate that a negative feedback loop involving miR-135a can restore AR expression under androgen-deprivation conditions, thus contributing to the upregulation of AR protein expression in castration-resistant PC. Finally, our unbiased proteomic profiling demonstrates that the majority of actual protein expression changes induced by SiM-miRNAs cannot be explained based on predicted direct interactions.
Journal of Applied Physiology | 2015
Stephen E. Alway; Brian T. Bennett; Joseph C. Wilson; Justin Sperringer; Junaith S. Mohamed; Neile K. Edens; Suzette L. Pereira
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats.
Journal of Biological Chemistry | 2011
Junaith S. Mohamed; Ameena Hajira; Zhenlin Li; Denise Paulin; Aladin M. Boriek
Bronchial biopsies of asthmatic patients show a negative correlation between desmin expression in airway smooth muscle cell (ASMC) and airway hyperresponsiveness. We previously showed that desmin is an intracellular load-bearing protein, which influences airway compliance, lung recoil, and airway contractile responsiveness (Shardonofsky, F. R., Capetanaki, Y., and Boriek, A. M. (2006) Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L890–L896). These results suggest that desmin may play an important role in ASMC homeostasis. Here, we report that ASMCs of desmin null mice (ASMCsDes−/−) show hypertrophy and up-regulation microRNA-26a (miR-26a). Knockdown of miR-26a in ASMCsDes−/− inhibits hypertrophy, whereas enforced expression of miR-26a in ASMCsDes+/+ induces hypertrophy. We identify that Egr1 (early growth responsive protein-1) activates miR-26a promoter via enhanced phosphorylation of Erk1/2 in ASMCsDes−/−. We show glycogen synthase kinase-3β (GSK-3β) as a target gene of miR-26a. Moreover, induction of ASMCsDes−/− hypertrophy by the Erk-1/2/Egr-1/miR-26a/GSK-3β pathway is consistent in human recombinant ASMCs, which stably suppresses 90% endogenous desmin expression. Overall, our data demonstrate a novel role for desmin as an anti-hypertrophic protein necessary for ASMC homeostasis and identifies desmin as a novel regulator of microRNA.