Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junbing Li is active.

Publication


Featured researches published by Junbing Li.


Molecular Phylogenetics and Evolution | 2015

Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes)

Lei Yang; Tetsuya Sado; M. Vincent Hirt; Emmanuel Pasco-Viel; Muthukumarasamy Arunachalam; Junbing Li; Xuzhen Wang; Joerg Freyhof; Kenji Saitoh; Andrew M. Simons; Masaki Miya; Shunping He; Richard L. Mayden

Cyprininae is the largest subfamily (>1300 species) of the family Cyprinidae and contains more polyploid species (∼400) than any other group of fishes. We examined the phylogenetic relationships of the Cyprininae based on extensive taxon, geographical, and genomic sampling of the taxa, using both mitochondrial and nuclear genes to address the phylogenetic challenges posed by polyploidy. Four datasets were analyzed in this study: two mitochondrial gene datasets (465 and 791 taxa, 5604bp), a mitogenome dataset (85 taxa, 14,771bp), and a cloned nuclear RAG1 dataset (97 taxa, 1497bp). Based on resulting trees, the subfamily Cyprininae was subdivided into 11 tribes: Probarbini (new; Probarbus+Catlocarpio), Labeonini Bleeker, 1859 (Labeo & allies), Torini Karaman, 1971 (Tor, Labeobarbus & allies), Smiliogastrini Bleeker, 1863 (Puntius, Enteromius & allies), Poropuntiini (Poropuntius & allies), Cyprinini Rafinesque, 1815 (Cyprinus & allies), Acrossocheilini (new; Acrossocheilus & allies), Spinibarbini (new; Spinibarbus), Schizothoracini McClelland, 1842 (Schizothorax & allies), Schizopygopsini Mirza, 1991 (Schizopygopsis & allies), and Barbini Bleeker, 1859 (Barbus & allies). Phylogenetic relationships within each tribe were discussed. Two or three distinct RAG1 lineages were identified for each of the following tribes Torini, Cyprinini, Spinibarbini, and Barbini, indicating their hybrid origin. The hexaploid African Labeobarbus & allies and Western Asian Capoeta are likely derived from two independent hybridization events between their respective maternal tetraploid ancestors and Cyprinion.


Journal of Systematics and Evolution | 2008

Inferring the Tree of Life of the order Cypriniformes, the earth's most diverse clade of freshwater fishes: Implications of varied taxon and character sampling

Richard L. Mayden; Kevin L. Tang; Robert M. Wood; Wei-Jen Chen; Mary K. Agnew; Kevin W. Conway; Lei Yang; Andrew M. Simons; Henry L. Bart; Phillip M. Harris; Junbing Li; Xuzhen Wang; Kenji Saitoh; Shunping He; Huanzhang Liu; Yiyu Chen; Mutsumi Nishida; Masaki Miya

The phylogenetic relationships of species are fundamental to any biological investigation, including all evolutionary studies. Accurate inferences of sister group relationships provide the researcher with an historical framework within which the attributes or geographic origin of species (or supraspecific groups) evolved. Taken out of this phylogenetic context, interpretations of evolutionary processes or origins, geographic distributions, or speciation rates and mechanisms, are subject to nothing less than a biological experiment without controls. Cypriniformes is the most diverse clade of freshwater fishes with estimates of diversity of nearly 3,500 species. These fishes display an amazing array of morphological, ecological, behavioral, and geographic diversity and offer a tremendous opportunity to enhance our understanding of the biotic and abiotic factors associated with diversification and adaptation to environments. Given the nearly global distribution of these fishes, they serve as an important model group for a plethora of biological investigations, including indicator species for future cli- matic changes. The occurrence of the zebrafish, Danio rerio, in this order makes this clade a critical component in understanding and predicting the relationship between mutagenesis and phenotypic expressions in vertebrates, including humans. With the tremendous diversity in Cypriniformes, our understanding of their phylogenetic relationships has not proceeded at an acceptable rate, despite a plethora of morphological and more recent mo- lecular studies. Most studies are pre-Hennigian in origin or include relatively small numbers of taxa. Given that analyses of small numbers of taxa for molecular characters can be compromised by peculiarities of long-branch attraction and nodal-density effect, it is critical that significant progress in our understanding of the relationships of these important fishes occurs with increasing sampling of species to mitigate these potential problems. The recent Cypriniformes Tree of Life initiative is an effort to achieve this goal with morphological and molecular (mitochondrial and nuclear) data. In this early synthesis of our understanding of the phylogenetic relationships of these fishes, all types of data have contributed historically to improving our understanding, but not all analyses are complementary in taxon sampling, thus precluding direct understanding of the impact of taxon sampling on achieving accurate phylogenetic inferences. However, recent molecular studies do provide some insight and in some instances taxon sampling can be implicated as a variable that can influence sister group relationships. Other instances may also exist but without inclusion of more taxa for both mitochondrial and nuclear genes, one cannot distinguish between inferences being dictated by taxon sampling or the origins of the molecular data.


Molecular Phylogenetics and Evolution | 2008

Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes).

Junbing Li; Xuzhen Wang; Xianghui Kong; Kai Zhao; Shunping He; Richard L. Mayden

The mitochondrial 16S ribosomal RNA (rRNA) gene sequences from 93 cyprinid fishes were examined to reconstruct the phylogenetic relationships within the diverse and economically important subfamily Cyprininae. Within the subfamily a biased nucleotide composition (A>T, C>G) was observed in the loop regions of the gene, and in stem regions apparent selective pressures of base pairing showed a bias in favor of G over C and T over A. The bias may be associated with transition-transversion bias. Rates of nucleotide substitution were lower in stems than in loops. Analysis of compensatory substitutions across these taxa demonstrates 68% covariation in the gene and a logical weighting factor to account for dependence in mutations for phylogenetic inference should be 0.66. Comparisons of varied stem-loop weighting schemes indicate that the down-weightings for stem regions could improve the phylogenetic analysis and the degree of non-independence of stem substitutions was not as important as expected. Bayesian inference under four models of nucleotide substitution indicated that likelihood-based phylogenetic analyses were more effective in improving the phylogenetic performance than was weighted parsimony analysis. In Bayesian analyses, the resolution of phylogenies under the 16-state models for paired regions, incorporating GTR + G + I models for unpaired regions was better than those under other models. The subfamily Cyprininae was resolved as a monophyletic group, as well as tribe Labein and several genera. However, the monophyly of the currently recognized tribes, such as Schizothoracin, Barbin, Cyprinion + Onychostoma lineages, and some genera was rejected. Furthermore, comparisons of the parsimony and Bayesian analyses and results of variable length bootstrap analysis indicates that the mitochondrial 16S rRNA gene should contain important character variation to recover well-supported phylogeny of cyprinid taxa whose divergences occurred within the recent 8 MY, but could not provide resolution power for deep phylogenies spanning 10-19 MYA.


Science China-life Sciences | 2012

Cyprinid phylogeny based on Bayesian and maximum likelihood analyses of partitioned data: implications for Cyprinidae systematics

Xuzhen Wang; Xiaoni Gan; Junbing Li; Richard L. Mayden; Shunping He

Cyprinidae is the biggest family of freshwater fish, but the phylogenetic relationships among its higher-level taxa are not yet fully resolved. In this study, we used the nuclear recombination activating gene 2 and the mitochondrial 16S ribosomal RNA and cytochrome b genes to reconstruct cyprinid phylogeny. Our aims were to (i) demonstrate the effects of partitioned phylogenetic analyses on phylogeny reconstruction of cyprinid fishes; (ii) provide new insights into the phylogeny of cyprinids. Our study indicated that unpartitioned strategy was optimal for our analyses; partitioned analyses did not provide better-resolved or -supported estimates of cyprinid phylogeny. Bayesian analyses support the following relationships among the major monophyletic groups within Cyprinidae: (Cyprininae, Labeoninae), ((Acheilognathinae, ((Leuciscinae, Tincinae), Gobioninae)), Xenocyprininae). The placement of Danioninae was poorly resolved. Estimates of divergence dates within the family showed that radiation of the major cyprinid groups occurred during the Late Oligocene through the Late Miocene. Our phylogenetic analyses improved our understanding of the evolutionary history of this important fish family.


Chinese Science Bulletin | 2005

Molecular phylogenetics of Gymnocypris (Teleostei: Cyprinidae) in Lake Qinghai and adjacent drainages

Kai Zhao; Junbing Li; Gongshe Yang; Ziyuan Duan; Shunping He; Yiyu Chen

Abstract149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocypris scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and Fst values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (π = 0.00096–0.00485). Therefore the Gymnocypris populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gymnocypris populations of Basin Qaidam should give a high priority in conservation programs.


Molecular Phylogenetics and Evolution | 2009

Comparative phylogeography of the Yellow River schizothoracine fishes (Cyprinidae): vicariance, expansion, and recent coalescence in response to the Quaternary environmental upheaval in the Tibetan Plateau.

Ziyuan Duan; Kai Zhao; Zuogang Peng; Junbing Li; Rui Diogo; Xinquan Zhao; Shunping He

National Natural Science Foundation of China (NSFC) [30225008, 30300036, 30530120]; Key Innovation Plan [KSCX2-SW-106]; National Basic Research Project in China [2005cb422005]; National Natural Science Foundation of China [30600062]


Progress in Natural Science | 2005

Phylogenetic studies of Chinese labeonine fishes (Teleostei : Cyprinidae) based on the mitochondrial 16S rRNA gene

Junbing Li; Xz Wang; Shunping He; Yy Chen

The mitochondrial 16S ribosomal RNA gene is sequenced from 24 ingroups taxa, including 18 species from Labeoninae grouped in 13 genera. Phylogenetic analyses are subjected to neighbor joining, maximum parsimony, maximum likelihood and Bayesian analyses. Phylogenetic analysis indicates that Labeoninae is basically a monophyletic assemblage and can be divided into 2 major clades: one comprising the genera Cirrhinus, Crossocheilus and Garra; and the other consisting of the genera Labeo, Sinilabeo, Osteochilus, Pseudoorossocheilus, Parasinilabeo. Ptychidio, Semilabeo, Pseudogyricheilus, Rectori and Discogobio. According to our present analysis, the features such as the presence of the adhesive disc on the chin and the pharyngeal teeth in 2 rows used in the traditional taxonomy of Labeoninae provide scarce information for phylogeny of labeonine fishes.


Science China-life Sciences | 2016

Cyprininae phylogeny revealed independent origins of the Tibetan Plateau endemic polyploid cyprinids and their diversifications related to the Neogene uplift of the plateau

Xuzhen Wang; Xiaoni Gan; Junbing Li; Yiyu Chen; Shunping He

Origin and diversification of the Tibetan polyploid cyprinids (schizothoracins) may help us to explore relationships between diversification of the cyprinids and the Tibetan Plateau uplift. Cyprininae phylogeny was analyzed using mitochondrial and nuclear DNA sequences to trace origins of polyploidy and diversifications of schizothoracins. Ancestral states reconstruction for ploidy levels indicated that the Cyprininae was diploid origin and the schizothoracin clades tetraploid origins. There were two diversification rate shifts along with diversification of the cyprinine fishes in response to the Tibetan uplift. The unusual diversification shifts were located to branches subtending the clades of Tibetan polyploid cyprinids. Our analyses suggested that (i) phylogeny of Cyprininae recovered two independent origins of the Tibetan polyploidy schizothoracins; (ii) diversifications of the schizothoracins were closely related to the Neogene uplift of the Tibetan plateau in the following ways: the relatively ancient Late Oligocene-Middle Miocene adaptive radiation may be associated with the uplift of the southern Tibet and Himalaya; the Middle Miocene-Early Pleistocene lineage-specific diversification broadly coincident with major phase of the Neogene Tibetan uplift; and the most recent Pleistocene diversification shift in Schizothorax closely coincident with the successive Kunlun-Huanghe and Gonghe movements of the Tibetan uplift and the glaciation-induced climate oscillations on the plateau.


Molecular Phylogenetics and Evolution | 2007

Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei : Cypriniformes) derived from the nuclear recombination activating gene 2 sequences

Xuzhen Wang; Junbing Li; Shunping He


Chinese Science Bulletin | 2008

Bayesian mixed models and divergence time estimation of Chinese cavefishes (Cyprinidae: Sinocyclocheilus)

Zhiqiang Li; Baocheng Guo; Junbing Li; Shunping He; Yiyu Chen

Collaboration


Dive into the Junbing Li's collaboration.

Top Co-Authors

Avatar

Shunping He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuzhen Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiyu Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoni Gan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kenji Saitoh

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziyuan Duan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Simons

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge