Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junchao Xia is active.

Publication


Featured researches published by Junchao Xia.


Journal of Physical Chemistry B | 2013

NMR Relaxation in Proteins with Fast Internal Motions and Slow Conformational Exchange: Model Free Framework and Markov State Simulations

Junchao Xia; Nanjie Deng; Ronald M. Levy

Calculating NMR relaxation effects for proteins with dynamics on multiple time scales generally requires very long trajectories based on conventional molecular dynamics simulations. In this report, we have built Markov state models from multiple MD trajectories and used the resulting MSM to capture the very fast internal motions of the protein within a free energy basin on a time scale up to hundreds of picoseconds and the more than 3 orders of magnitude slower conformational exchange between macrostates. To interpret the relaxation data, we derive new equations using the model-free framework which includes two slowly exchanging macrostates, each of which also exhibits fast local motions. Using simulations of HIV-1 protease as an example, we show how the populations of slowly exchanging conformational states as well as order parameters for the different states can be determined from the NMR relaxation data.


Journal of Computational Chemistry | 2015

Large‐scale asynchronous and distributed multidimensional replica exchange molecular simulations and efficiency analysis

Junchao Xia; William F. Flynn; Emilio Gallicchio; Bin W. Zhang; Peng He; Zhiqiang Tan; Ronald M. Levy

We describe methods to perform replica exchange molecular dynamics (REMD) simulations asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations on grid computing networks consisting of heterogeneous and distributed computing environments as well as on homogeneous high‐performance clusters. We have implemented these methods on NSF (National Science Foundation) XSEDE (Extreme Science and Engineering Discovery Environment) clusters and BOINC (Berkeley Open Infrastructure for Network Computing) distributed computing networks at Temple University and Brooklyn College at CUNY (the City University of New York). They are also being implemented on the IBM World Community Grid. To illustrate the methods, we have performed extensive (more than 60 ms in aggregate) simulations for the beta‐cyclodextrin‐heptanoate host‐guest system in the context of one‐ and two‐dimensional ASyncRE, and we used the results to estimate absolute binding free energies using the binding energy distribution analysis method. We propose ways to improve the efficiency of REMD simulations: these include increasing the number of exchanges attempted after a specified molecular dynamics (MD) period up to the fast exchange limit and/or adjusting the MD period to allow sufficient internal relaxation within each thermodynamic state. Although ASyncRE simulations generally require long MD periods (>picoseconds) per replica exchange cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the combination of the MD period and the number of exchanges attempted per cycle.


Computer Physics Communications | 2015

Asynchronous Replica Exchange Software for Grid and Heterogeneous Computing.

Emilio Gallicchio; Junchao Xia; William F. Flynn; Baofeng Zhang; Sade Samlalsingh; Ahmet Mentes; Ronald M. Levy

Parallel replica exchange sampling is an extended ensemble technique often used to accelerate the exploration of the conformational ensemble of atomistic molecular simulations of chemical systems. Inter-process communication and coordination requirements have historically discouraged the deployment of replica exchange on distributed and heterogeneous resources. Here we describe the architecture of a software (named ASyncRE) for performing asynchronous replica exchange molecular simulations on volunteered computing grids and heterogeneous high performance clusters. The asynchronous replica exchange algorithm on which the software is based avoids centralized synchronization steps and the need for direct communication between remote processes. It allows molecular dynamics threads to progress at different rates and enables parameter exchanges among arbitrary sets of replicas independently from other replicas. ASyncRE is written in Python following a modular design conducive to extensions to various replica exchange schemes and molecular dynamics engines. Applications of the software for the modeling of association equilibria of supramolecular and macromolecular complexes on BOINC campus computational grids and on the CPU/MIC heterogeneous hardware of the XSEDE Stampede supercomputer are illustrated. They show the ability of ASyncRE to utilize large grids of desktop computers running the Windows, MacOS, and/or Linux operating systems as well as collections of high performance heterogeneous hardware devices.


Journal of Physical Chemistry B | 2014

Molecular dynamics of the proline switch and its role in Crk signaling.

Junchao Xia; Ronald M. Levy

The Crk adaptor proteins play a central role as a molecular timer for the formation of protein complexes including various growth and differentiation factors. The loss of regulation of Crk results in many kinds of cancers. A self-regulatory mechanism for Crk was recently proposed, which involves domain–domain rearrangement. It is initiated by a cis–trans isomerization of a specific proline residue (Pro238 in chicken Crk II) and can be accelerated by Cyclophilin A. To understand how the proline switch controls the autoinhibition at the molecular level, we performed large-scale molecular dynamics and metadynamics simulations in the context of short peptides and multidomain constructs of chicken Crk II. We found that the equilibrium and kinetic properties of the macrostates are regulated not only by the local environments of specified prolines but also by the global organization of multiple domains. We observe the two macrostates (cis closed/autoinhibited and trans open/uninhibited) consistent with NMR experiments and predict barriers. We also propose an intermediate state, the trans closed state, which interestingly was reported to be a prevalent state in human Crk II. The existence of this macrostate suggests that the rate of switching off the autoinhibition by Cyp A may be limited by the relaxation rate of this intermediate state.


Journal of Computer-aided Molecular Design | 2017

A combined treatment of hydration and dynamical effects for the modeling of host–guest binding thermodynamics: the SAMPL5 blinded challenge

Rajat Kumar Pal; Kamran Haider; Divya Kaur; William F. Flynn; Junchao Xia; Ronald M. Levy; Tetiana Taran; Lauren Wickstrom; Tom Kurtzman; Emilio Gallicchio

As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host–guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye–Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.


Journal of Chemical Theory and Computation | 2016

Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation

Ahmet Mentes; Nanjie Deng; R. S. K. Vijayan; Junchao Xia; Emilio Gallicchio; Ronald M. Levy

Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.


Journal of Chemical Information and Modeling | 2018

Improving Prediction Accuracy of Binding Free Energies and Poses of HIV Integrase Complexes Using the Binding Energy Distribution Analysis Method with Flattening Potentials

Junchao Xia; William F. Flynn; Ronald M. Levy

To accelerate conformation sampling of slow dynamics from receptor or ligand, we introduced flattening potentials on selected bonded and nonbonded intramolecular interactions to the binding energy distribution analysis method (BEDAM) for calculating absolute binding free energies of protein-ligand complexes using an implicit solvent model and implemented flattening BEDAM using the asynchronous replica exchange (AsyncRE) framework for performing large scale replica exchange molecular dynamics (REMD) simulations. The advantage of using the flattening feature to reduce high energy barriers was exhibited first by the p-xylene-T4 lysozyme complex, where the intramolecular interactions of a protein side chain on the binding site were flattened to accelerate the conformational transition of the side chain from the trans to the gauche state when the p-xylene ligand is present in the binding site. Much more extensive flattening BEDAM simulations were performed for 53 experimental binders and 248 nonbinders of HIV-1 integrase which formed the SAMPL4 challenge, with the total simulation time of 24.3 μs. We demonstrated that the flattening BEDAM simulations not only substantially increase the number of true positives (and reduce false negatives) but also improve the prediction accuracy of binding poses of experimental binders. Furthermore, the values of area under the curve (AUC) of receiver operating characteristic (ROC) and the enrichment factors at 20% cutoff calculated from the flattening BEDAM simulations were improved significantly in comparison with that of simulations without flattening as we previously reported for the whole SAMPL4 database. Detailed analysis found that the improved ability to discriminate the binding free energies between the binders and nonbinders is due to the fact that the flattening simulations reduce the reorganization free energy penalties of binders and decrease the overlap of binding free energy distributions of binders relative to that of nonbinders. This happens because the conformational ensemble distributions for both the ligand and protein in solution match those at the fully coupled (complex) state more closely when the systems are more fully sampled after the flattening potentials are applied to the intermediate states.


Journal of Physical Chemistry B | 2016

Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.

Bin W. Zhang; Wei Dai; Emilio Gallicchio; Peng He; Junchao Xia; Zhiqiang Tan; Ronald M. Levy


Journal of Physical Chemistry Letters | 2015

A Stochastic Solution to the Unbinned WHAM Equations

Bin W. Zhang; Junchao Xia; Zhiqiang Tan; Ronald M. Levy


Journal of Computer-aided Molecular Design | 2016

Large scale free energy calculations for blind predictions of protein–ligand binding: the D3R Grand Challenge 2015

Nanjie Deng; William F. Flynn; Junchao Xia; R. S. K. Vijayan; Baofeng Zhang; Peng He; Ahmet Mentes; Emilio Gallicchio; Ronald M. Levy

Collaboration


Dive into the Junchao Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio Gallicchio

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baofeng Zhang

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge