Junfeng Dou
Beijing Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junfeng Dou.
Journal of Environmental Sciences-china | 2010
Junfeng Dou; Aizhong Ding; Xiang Liu; Yongchao Du; Dong Deng; Jinsheng Wang
A pure culture using benzene as sole carbon and energy sources was isolated by screening procedure from gasoline contaminated soil. The analysis of the 16S rDNA gene sequence, morpholpgical and physiological characteristics showed that the isolated strain was a member of genus Bacillus cereus. The biodegradation performance of benzene by B. cereus was evaluated, and the results showed that benzene could be efficiently biodegraded when the initial benzene concentration was below 150 mg/L. The metabolites of anaerobic nitrate-dependent benzene oxidation by strain B. cereus were identified as phenol and benzoate. The results of substrate interaction between binary combinations for benzene, phenol and benzoate showed that the simultaneous presence of benzene stimulated the degradation of benzoate, whereas the addition of benzene inhibited the degradation of phenol. Benzene degradation by B. cereus was enhanced by the addition of phenol and benzoate, the enhanced effects were more pronounced at higher concentration. To our knowledge, this is the first report that the isolated bacterial culture of B. cereus can efficiently degraded benzene under nitrate reducing conditions.
Journal of Environmental Sciences-china | 2008
Junfeng Dou; Xiang Liu; Zhifeng Hu
Different concentrations of BTEX, including benzene, toluene, ethylbenzene, and three xylene isomers, were added into soil samples to investigate the anaerobic degradation potential by the augmented BTEX-adapted consortia under nitrate reducing conditions. All the BTEX substrates could be anaerobically biodegraded to non-detectable levels within 70 d when the initial concentrations were below 100 mg/kg in soil. Toluene was degraded faster than any other BTEX compounds, and the high-to-low order of degradation rates were toluene > ethylbenzene > m-xylene > o-xylene > benzene > p-xylene. Nitrite was accumulated with nitrate reduction, but the accumulation of nitrite had no inhibitory effect on the degradation of BTEX throughout the whole incubation. Indigenous bacteria in the soil could enhance the BTEX biodegradation ability of the enriched mixed bacteria. When the six BTEX compounds were simultaneously present in soil, there was no apparent inhibitory effect on their degradation with lower initial concentrations. Alternatively, benzene, o-xylene, and p-xylene degradation were inhibited with higher initial concentrations of 300 mg/kg. Higher BTEX biodegradation rates were observed in soil samples with the addition of sodium acetate compared to the presence of a single BTEX substrate, and the hypothesis of primary-substrate stimulation or cometabolic enhancement of BTEX biodegradation seems likely.
Journal of Hazardous Materials | 2009
Junfeng Dou; Xiang Liu; Aizhong Ding
Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.
Journal of Environmental Sciences-china | 2017
Xianming Zheng; Junfeng Dou; Jing Yuan; Wei Qin; Xiaoxi Hong; Aizhong Ding
To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2+>Mg2+>K+>Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.
Journal of Environmental Sciences-china | 2012
Junfeng Dou; Aizhong Ding; Lirong Cheng; Raju Sekar; Hongting Wang; Shuairan Li
An amperometric biosensor based on screen-printed electrodes (SPEs) was developed for the determination of organophosphorus pesticides in water samples. The extent of acetylcholinesterase (AChE) deactivation was determined and quantified for pesticide concentrations in water samples. An enzyme immobilization adsorption procedure and polyacrylamide gel matrix polymerization were used for fabrication of the biosensor, with minimal losses in enzyme activity. The optimal conditions for enzyme catalytic reaction on the SPEs surfaces were acetylthiocholine chloride (ATChCl) concentration of 5 mmol/L, pH 7 and reaction time of 4 min. The detection limits for three organophosphorus pesticides (dichlorvos, monocrotophs and parathion) were in the range of 4 to 7 microg/L when an AChE amount of 0.1 U was used for immobilization.
Brazilian Journal of Microbiology | 2017
Wei Qin; Fuqiang Fan; Yi Zhu; Xiaolong Huang; Aizhong Ding; Xiang Liu; Junfeng Dou
Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.
Environmental Technology | 2015
Junfeng Dou; Wei Qin; Aizhong Ding; En Xie; Lei Zheng; Wencheng Ding
A batch of lab-based adsorption experiments were performed to investigate the arsenic (As) removal efficacy by activated alumina. Four factors including contact time, pH, initial As concentration and different coexisting ions were examined. The adsorbent made of activated alumina (AA) with particles of 2–4 mm diameter showed a high As removal efficiency and the As concentrations of the samples were below 0.05 mg/L when the hydraulic retention time (HRT) was operated above 5 min. The As concentrations of the samples could remain below 0.05 mg/L for 30 days. A series of AA adsorption dams coupled with several other supporting adsorption techniques were employed for As-contaminated river restoration. The engineering project functioned well, and the effluent As concentration was below 0.05 mg/L when the influent was between 0.2 and 0.7 mg/L, which met the discharge requirement of the Surface Water Quality Standards criteria III in China. The results demonstrated that AA adsorption dams could be applied for emergency treatments of small- or medium-sized rivers contaminated with As.
Bioresource Technology | 2014
En Xie; Aizhong Ding; Junfeng Dou; Lei Zheng; Jin Yang
Using pH values, temperature, and dissolved oxygen as the influencing factors, a decaying characteristics experiment of activated sludge was carried out by combining the LIVE/DEAD® Baclight technique with the 2,3,5-triphenyl tetrazolium chloride - dehydrogenase activity determination method. Using batch experiments, a response surface methodology was applied in the experimental design to determine the most important influential factor in the decay of activated sludge. The activated sludge mixed liquor for the experiment was generated in a laboratory-scale circular plug-flow reactor, which has already been approved for an invention patent. The analyzed results revealed that the most important influential factor in sludge activity decay is the pH, followed by temperature and then dissolved oxygen. After the decay experiment, 40.94-90.03% of sludge activity decay is caused by reduced cell activity, and the rest is due to cell death.
Environmental Technology | 2014
Wei Qin; Junfeng Dou; Aizhong Ding; En Xie; Lei Zheng
Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration of a pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.
Chemosphere | 2018
Meng Xia; Xianming Zheng; Mingyang Du; Yingying Wang; Aizhong Ding; Junfeng Dou
The increasing nuclear energy consumption has posed serious environmental concerns (e.g. nuclear leakage), and the removal of radionuclides such as cesium becomes an urgent issue to be solved currently. In this research, a novel non-toxic adsorbent lithium-modified montmorillonite clay encapsulated in calcium alginate microbeads (MCA/Li) was fabricated by using ion-exchange method and then used successfully in the remediation of cesium-contaminated wastewater. Analyses of scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of adsorbent MCA/Li, such as internal crystal structure, constituent elements, and functional groups. The effects of concentration ratios (sodium alginate/montmorillonite), solution pH, contacting time and initial Cs+ concentration on the adsorption behavior were carefully investigated via batch adsorption experiments. The adsorbent MCA/Li exhibited higher selectivity and removal efficiency towards Cs+ with the maximum adsorption capacity of 100.25 mg/g. In the kinetics study, the pseudo-first-order fitted the cesium adsorption data of MCA/Li better than the pseudo-second-order. The adsorption mechanism studies revealed the process followed the Langmuir isotherm model, which suggested that Cs+ adsorption onto MCA/Li is a monolayer homogeneous adsorption process. The research findings indicated this novel adsorbent MCA/Li demonstrated great potential in radioactive wastewater treatment due to its convenience in synthesis, high adsorption capacity, and low cost.