Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung-A Park is active.

Publication


Featured researches published by Jung-A Park.


Archives of Insect Biochemistry and Physiology | 2011

Plasmatocyte-spreading peptide influences hemocyte behavior via eicosanoids

Koigoora Srikanth; Jung-A Park; David Stanley; Yonggyun Kim

Hemocyte-spreading behavior is required for expressing a cellular immune response, nodulation, which clears the vast majority of invading microbes from circulation. The nodulation response is completed by a layer of plasmatocytes, which spread over the nodule and initiate a malanization process leading to darkened nodules. Plasmatocyte-spreading peptide (PSP), the first reported insect cytokine, is responsible for mediating the spreading and attachment of some subclasses of plasmatocytes to nodules. Prostaglandins (PGs), one group of eicosanoids formed from arachidonic acid (AA), also mediate plasmatocyte spreading (PS), although the potential interactions between the PSP and PG signal transduction pathways have not been investigated. We tested our hypothesis that PSP acts via biosynthesis of eicosanoids, specifically PGs, in the beet armyworm, Spodoptera exigua. In this study, we report that (1) PSP and PGE(2) independently stimulated Ca(++)-dependent PS, (2) inhibitors of PG biosynthesis reversibly blocked PS, (3) dsRNA silencing the gene encoding proPSP blocked PS, which was rescued by PSP and by AA, (4) PSP-stimulated PS was reversibly impaired by inhibitors of PG biosynthesis, and (5) the inhibitor-impaired spreading was rescued by AA. Taken together, these points strongly support our model showing that PSP acts via a plasmatocyte-surface receptor, which stimulates biosynthesis of the PGs responsible for mediating plasmatocytes spreading.


Journal of Invertebrate Pathology | 2012

Eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway in response to fungal infection.

Jung-A Park; Yonggyun Kim

Phospholipase A(2) (PLA(2)) catalyzes hydrolysis of phospholipids at sn-2 position and usually releases arachidonic acid, which is oxygenated into various eicosanoids that mediate innate immune responses in insects. PLA(2) activities were measured in both immune-associated tissues of hemocyte and fat body in the beet armyworm, Spodoptera exigua. Upon challenge of an entomopathogenic fungus, Beauveria bassiana, the PLA(2)s were significantly activated in both hemocyte and fat body. The fungal infection also induced gene expression of antimicrobial peptides (AMPs), such as two attacins, cecropin, gallerimycin, gloverin, hemolin, and transferrin of S. exigua. RNA interference of Toll or Imd signal pathway using double-stranded RNAs (dsRNAs) specific to SeToll or SeRelish suppressed specific AMP gene expressions, in which dsRNA specific to SeToll suppressed two attacins, cecropin, gallerimycin, gloverin, hemolin, and transferrin I, while dsRNA specific to SeRelish suppressed only cecropin. Interestingly, dsRNA specific to SeToll also significantly inhibited the activation of PLA(2) in response to the fungal infection, but dsRNA specific to SeRelish did not. Eicosanoid-dependent hemocyte nodulation was inhibited by dsRNA specific to SeToll but was not by dsRNA specific to SeRelish. These results suggest that eicosanoid biosynthesis is activated via Toll, but not Imd signal pathway in response to fungal infection in S. exigua.


Korean Journal of Applied Entomology | 2009

Analysis of migration of the oriental fruit moth, Grapholita molesta, in apple-cultivating areas based on population monitoring using sex pheromone and RAPD molecular marker.

Yonggyun Kim; Sungwoo Bae; Ye-Rim Son; Jung-A Park

Local and seasonal populations of the oriental fruit moth, Grapholita molesta, were monitored with sex pheromone trapping and RAPD (random amplified polymorphic DNA) molecular marker to analyze their movement in apple orchards. To detect their movements among farms, pheromone traps were placed at regions between apple farms (`outside-farms`) as well as within-farms (`inside-farms`). Four seasonal adult peaks were evident in apple-cultivating fields from April to October in both trappings of inside- or outside-farms. After overwintering generation, populations of inside-farms were significantly reduced with frequent insecticide applications, compared to populations of outside-farms. Within apple farms, G. molesta tended to be unevenly distributed because of significant sublocal preference. Active movements of local and seasonal populations of G. molesta were supported by gene flow analysis using RAPD marker. Monitoring data using sex pheromone and seasonal reduction in initial genetic differentiation detected in the overwintering populations suggest that there must be significant movement of G. molesta among different orchards in apple-cultivating areas.


Korean journal of applied entomology | 2008

Genetic Differentiation of Overwintering Populations of Oriental Fruit Moth, Grapholita molesta, and Their Movement

Jung-A Park; Ye-Rim Son; Sungwoo Bae; Yonggyun Kim

Spring phonology of the oriental fruit moth, Grapholita molesta, was monitored using sex pheromone traps in apple cultivating areas. Their occurrence was earlier in southern areas and their population sizes were significantly different among orchards even in a local cultivating zone. The overwintering populations appeared to move between local orchards, based on the fact that monitoring data obtained at the sites between orchards were similar to those of nearby orchards. However, within orchards, these adult movements appeared to decrease and showed skewed occurrences at the side of upwind direction or close to neighboring orchards. At initial occurrence peak(April 20-25), the ovenvintering populations of the different localities were collected and analyzed in their genetic distances. PCR-RAPD analysis indicated that there were significant genetic differences among the overwintering populations of G. molesta. This genetic differentiation of overwinterin populations may be due to genetic bottleneck following differential selection pressures against the subpopulations of G. molesta during winter on the basis of the RAPD analysis that each early spring population was significantly different to its previous fall population in the same locality.


Cellular Immunology | 2012

Toll recognition signal activates oenocytoid cell lysis via a crosstalk between plasmatocyte-spreading peptide and eicosanoids in response to a fungal infection

Jung-A Park; Yonggyun Kim

Plasmatocyte-spreading peptide (PSP) activates hemocyte-spreading behavior in response to various microbial pathogens. Its homolog, growth-blocking peptide, has several functions that activate immune cells and induce oenocytoid cell lysis (OCL). OCL is required for release of prophenoloxidase from oenocytoids in the beet armyworm, Spodoptera exigua. Injection of PSP to S. exigua larvae significantly induced in vivo OCL and resulted in significant increase of phenoloxidase (PO) activity. A fungal infection induced PSP expression and also significantly increased OCL. RNA interference (RNAi) of PSP expression significantly suppressed OCL induction and subsequently inhibited PO activation. Interestingly, an addition of dexamethasone (a specific phospholipase A₂ inhibitor) inhibited the PSP activity to induce OCL. Toll signal pathway was associated with PSP action on inducing OCL because RNAi of Toll expression suppressed PSP expression and subsequent OCL induction. However, an addition of PSP to the larvae under RNAi of Toll expression rescued the progress of OCL.


Journal of Microbiology | 2012

Phospholipase A2 inhibitors in bacterial culture broth enhance pathogenicity of a fungus Nomuraea rileyi

Jung-A Park; Yonggyun Kim

An entomopathogenic fungus, Nomuraea rileyi, was isolated and its identity was confirmed by its internal transcribed spacer DNA sequence. The isolated N. rileyi exhibited a specific pathogenicity to lepidopteran species. This study was focused on enhancing the fungal pathogenicity by using immunosuppressive agents. In response to infection of N. rileyi, Spodoptera exigua larvae significantly induced catalytic activity of phospholipase A2 (PLA2) in three immune-associated tissues, namely hemocytes, fat body, and hemolymph plasma. Furthermore, the infected S. exigua larvae induced transcription of several antimicrobial peptide (AMP) genes. Two entomopathogenic bacteria, Xenorhabdus nematophila (Xn) and Photorhabdus temperata subsp. temperata (Ptt), possessed specific PLA2-inhibitory activities and their culture broths significantly inhibited the enzyme activities in hemocytes, fat body, and plasma of S. exigua. In addition, the bacterial metabolites inhibited transcription of AMP genes in S. exigua that would normally respond to the immune challenge by N. rileyi. The immunosuppressive effect of Xn or Ptt bacterial broth resulted in significant enhancement of the fungal pathogenicity against late instar larvae of S. exigua and Plutella xylostella. The effect of such a mixture was confirmed by field assay against two lepidopteran species. These results suggest that the bacterial and fungal mixture can be applied to develop a novel biopesticide to control lepidopteran species.


Korean journal of applied entomology | 2012

Biochemical Analysis of Physiological Stress Induced by High Frequency Sound Treatment in the Beet Armyworm, Spodoptera exigua

Yonggyun Kim; Ye-Rim Son; Sam-Yeol Seo; Bok-Ri Park; Jung-A Park

High frequency sounds disrupt physiological processes, such as feeding behavior, development and immune responses of Spodoptera exigua. We analyzed high frequency sounds with respect to biochemical changes in S. exigua. High frequency sound (5,000 Hz, 95 dB) suppressed protein synthesis and secretion of midgut epithelium. It also significantly inhibited a digestive enzyme activity of phospholipase . The gene expression of three different heat shock proteins and apolipophorin III was altered, particularly in midgut tissue in response to high frequency sound treatments. High frequency sound treatments significantly increased sugar and lipid levels in hemolymph plasma. These results suggest that high frequency sounds are a physiological stress that induces biochemical changes in S. exigua.


Korean journal of applied entomology | 2007

Genetic Identity of a Korean Isolate of an Endoparasitoid Cotesia plutellae(Hymenoptera: Braconidae), Among Reproductive Incompatibility Types

Jung-A Park; Yong-Gyun Kim

Reproductive incompatibility is an Important factor to select a specific biologlcal control agent for successful augmentation of the corresponding endogenous population. An endoparasitoid, Cotesia plutellae (Kurdjumov), is an effective control agent to diamondback moth, Plutella xylostella (L.) and has been known to be classified into two groups in terms of reproductive incompatibility. This study analyzed an Korean population of C. plutellae in terms of morphological characters and mitochondrial DNA marker, which did not match with either of two reproductive incompatibility groups. These results suggest that a Korean population of C. plutellae can be involved in a novel reproductive group. For any augmentation program of C. plutellae in Korea, reproductive incompatibility should be seriously considered to select a particular exotic population.


Journal of Asia-pacific Entomology | 2011

Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity

Jung-A Park; Yonggyun Kim


한국농약과학회 학술발표대회 논문집 | 2011

Report of an Entomopathogenic Fungus, Nomuraea rileyi, and its Application to Develop a Novel Biopesticide

Jung-A Park; Yonggyun Kim

Collaboration


Dive into the Jung-A Park's collaboration.

Top Co-Authors

Avatar

Yonggyun Kim

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Ye-Rim Son

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Sungwoo Bae

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Bok-Ri Park

Andong National University

View shared research outputs
Top Co-Authors

Avatar

Sam-Yeol Seo

Andong National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Stanley

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge