Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung-Hwa Tao-Cheng is active.

Publication


Featured researches published by Jung-Hwa Tao-Cheng.


The Journal of Neuroscience | 2004

Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation

Nikolai Otmakhov; Jung-Hwa Tao-Cheng; Stephen Carpenter; Brent Asrican; Ayse Dosemeci; Thomas S. Reese; John E. Lisman

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a leading candidate for a synaptic memory molecule because it is persistently activated after long-term potentiation (LTP) induction and because mutations that block this persistent activity prevent LTP and learning. Previous work showed that synaptic stimulation causes a rapidly reversible translocation of CaMKII to the synaptic region. We have now measured green fluorescent protein (GFP)-CaMKIIα translocation into synaptic spines during NMDA receptor-dependent chemical LTP (cLTP) and find that under these conditions, translocation is persistent. Using red fluorescent protein as a cell morphology marker, we found that there are two components of the persistent accumulation. cLTP produces a persistent increase in spine volume, and some of the increase in GFP-CaMKIIα is secondary to this volume change. In addition, cLTP results in a dramatic increase in the bound fraction of GFP-CaMKIIα in spines. To further study the bound pool, immunogold electron microscopy was used to measure CaMKIIα in the postsynaptic density (PSD), an important regulator of synaptic function. cLTP produced a persistent increase in the PSD-associated pool of CaMKIIα. These results are consistent with the hypothesis that CaMKIIα accumulation at synapses is a memory trace of past synaptic activity.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Glutamate-induced transient modification of the postsynaptic density

Ayse Dosemeci; Jung-Hwa Tao-Cheng; Lucia Vinade; Christine A. Winters; Lucas Pozzo-Miller; Thomas S. Reese

Depolarization of rat hippocampal neurons with a high concentration of external potassium induces a thickening of postsynaptic densities (PSDs) within 1.5–3 min. After high-potassium treatment, PSDs thicken 2.1-fold in cultured neurons and 1.4-fold in hippocampal slices compared with their respective controls. Thin-section immunoelectron microscopy of hippocampal cultures indicates that at least part of the observed thickening of PSDs can be accounted for by an accumulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) on their cytoplasmic faces. Indeed, PSD-associated gold label for CaMKII increases 5-fold after depolarization with potassium. The effects of high-potassium treatment on the composition and structure of the PSDs are mimicked by direct application of glutamate. In cultures, glutamate-induced thickening of PSDs and the accumulation of CaMKII on PSDs are reversed within 5 min of removal of glutamate and Ca2+ from the extracellular medium. These results suggest that PSDs are dynamic structures whose thickness and composition are subject to rapid and transient changes during synaptic activity.


Neuroscience | 1998

The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons

Jing Du; Jung-Hwa Tao-Cheng; P Zerfas; Chris J. McBain

A variety of voltage-gated ion channels are expressed on principal cell dendrites and have been proposed to play a pivotal role in the regulation of dendritic excitability. Previous studies at the light microscopic level demonstrated that the K+ channel subunit Kv2.1 expression was polarized to the cell soma and dendrites of principal neurons throughout the central nervous system. Here, using double immunostaining we now show that Kv2.1 protein is similarly expressed in the majority of cortical and hippocampal parvalbumin, calbindin and somatostatin-containing inhibitory interneurons. At the electron microscopic level Kv2.1 immunoreactivity was primarily observed on the plasma membrane of the somata and proximal dendrites of both principal neurons and inhibitory interneurons; expression was low on smaller dendritic branches, and absent on axons and presynaptic terminals. Kv2.1 subunit expression was highly concentrated on the cell surface membrane immediately facing astrocytic processes. Kv2.1 expression was also concentrated in specific cytoplasmic compartments and on the subsurface cisterns underlying the plasma membrane facing astrocytes. In addition, Kv2.1 subunit immunoreactivity was associated with postsynaptic densities of a fraction of inhibitory symmetric synapses; while expression at asymmetric synapses was rare. These data demonstrate that channels formed by Kv2.1 subunits are uniquely positioned on the soma and principal dendrites of both pyramidal cells and inhibitory interneurons at sites immediately adjacent to astrocytic processes. This close apposition to astrocytes will ensure a rapid removal and limit the influence of K+ released into the extracellular space. This expression pattern suggests that channels formed by Kv2.1 are poised to provide a role in the regulation of neuronal dendritic excitability.


International Journal of Developmental Neuroscience | 1988

Development of membrane interactions between brain endothelial cells and astrocytes in vitro.

Jung-Hwa Tao-Cheng; Milton W. Brightman

To ascertain whether there is a mutual influence on the structure of their cell membranes, brain endothelial cells and their closest neighbor, astrocytes, were grown alone or together in vitro and freeze‐fractured. When cultured separately, the brain endothelial cells had a low frequency of short, fragmented tight junctions. Many gap junctions, which are absent from mature brain capillaries in vivo, intercalated among the tight junctional strands, or were separate from them. The separately cultured astrocytes had low concentrations of randomly distributed assemblies (1–30/μm2) in their membranes. When the two cell types were co‐cultured, the endothelial tight junctions were greatly enhanced in frequency, length, width and complexity, and the gap junctional area enclosed by the tight junctional strands were markedly reduced. Thus, the in vitro endothelial junctional complex resembled their in vivo counterpart, the tight junctions of brain capillaries, when co‐cultured with astrocytes. Reciprocally, brain endothelial cells induced the astrocytic membrane assemblies to increase in concentrations by 5̃ fold, and sometimes to form aggregates with very high concentrations (400/μm2) which approached the concentration of the perivascular astrocytic membranes in vivo. Substituting astrocytes with fibroblasts or smooth muscle cells in co‐cultures did not enhance the tight junctions in the brain endothelium. On the other hand, substituting brain endothelium with endothelium from pulmonary artery or aorta in cocultures did not increase the concentration or induce aggregation of the assemblies in the astrocytes. Thus, the two close neighbors in vivo, brain endothelium and astrocytes, interact specifically in vitro to induce development of membrane specializations which resemble those at the site of the blood‐brain barrier.


Neuroscience | 2006

Activity-related redistribution of presynaptic proteins at the active zone.

Jung-Hwa Tao-Cheng

Immunogold labeling distributions of seven presynaptic proteins were quantitatively analyzed under control conditions and after high K+ depolarization in excitatory synapses from dissociated rat hippocampal cultures. Three parallel zones in presynaptic terminals were sampled: zones I and II, each about one synaptic vesicle wide extending from the active zone; and zone III, containing a distal pool of vesicles up to 200 nm from the presynaptic membrane. The distributions of SV2 and synaptophysin, two synaptic vesicle integral membrane proteins, generally followed the distribution of synaptic vesicles, which were typically evenly distributed under control conditions and had a notable depletion in zone III after stimulation. Labels of synapsin I and synuclein, two synaptic vesicle-associated proteins, were similar to each other; both were particularly sparse in zone I under control conditions but showed a prominent enrichment toward the active zone, after stimulation. Labels of Bassoon, Piccolo and RIM 1, three active zone proteins, had very different distribution profiles from one another under control conditions. Bassoon was enriched in zone II, Piccolo and RIM 1 in zone I. After stimulation, Bassoon and Piccolo remained relatively unchanged, but RIM 1 redistributed with a significant decrease in zone I, and increases in zones II and III. These results demonstrate that Bassoon and Piccolo are stable components of the active zone while RIM 1, synapsin I and synuclein undergo dynamic redistribution with synaptic activity.


Neuroscience | 2007

Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate

Jung-Hwa Tao-Cheng

Although it has been suggested that presynaptic active zone (AZ) may be preassembled, it is still unclear which entities carry the various proteins to the AZ during synaptogenesis. Here, I propose that aggregates of dense core vesicles (DCV) and small clear vesicles in the axons of young rat hippocampal cultures are carriers containing preformed AZ and synaptic vesicle (SV) components on their way to developing synapses. The aggregates were positively labeled with antibodies against Bassoon and Piccolo (two AZ cytomatrix proteins), VAMP, SV2, synaptotagmin (three SV membrane proteins), and synapsin I (a SV-associated protein). Bassoon and Piccolo labeling were localized at dense material both in the aggregates and at the AZ. In addition to the SV at the synapses, the SV membrane proteins labeled the clear vesicles in the aggregate as well as many other SV-like and pleiomorphic vesicular structures in the axons, and synapsin I labeling was associated with the vesicles in the aggregates. In single sections, these axonal vesicle aggregates were approximately 0.22 by 0.13 microm in average dimensions and contain one to two DCV and five to six small clear vesicles. Serial sections confirmed that the aggregates were not synaptic junctions sectioned en face. Labeling intensities of Bassoon and Piccolo measured from serially sectioned transport aggregates and AZ were within range of each other, suggesting that one or a few aggregates, but not individual DCV, can carry sufficient Bassoon and Piccolo to form an AZ. The present findings provide the first ultrastructural evidence localizing various AZ and SV proteins in a preassembled multi-vesicle transport aggregate that has the potential to quickly form a functional active zone.


The Journal of Comparative Neurology | 2007

Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain.

Jung-Hwa Tao-Cheng; Paul E. Gallant; Milton W. Brightman; Ayse Dosemeci; Thomas S. Reese

We recently showed by electron microscopy that the postsynaptic density (PSD) from hippocampal cultures undergoes rapid structural changes after ischemia‐like conditions. Here we report that similar structural changes occur after delay in transcardial perfusion fixation of the mouse brain. Delay in perfusion fixation, a condition that mimics ischemic stress, resulted in 70%, 90%, and 23% increases in the thickness of PSDs from the hippocampus (CA1), cerebral cortex (layer III), and cerebellar cortex (Purkinje spines), respectively. In step with PSD thickening, the amount of PSD‐associated α‐calcium calmodulin‐dependent protein kinase II (α‐ CaMKII) label increased more in cerebral cortical spines than in Purkinje spines. Although the Purkinje PSDs thickened only slightly after delayed fixation, they became highly curved, and many formed sub‐PSD spheres ∼80 nm in diameter that labeled for CaMKII. Delayed perfusion fixation also produced more cytoplamic CaMKII clusters (∼110 nm in diameter) in the somas of pyramidal cells (from hippocampus and cerebral cortex) than in Purkinje cells. Thus a short delay in perfusion fixation produces cell‐specific structural changes at PSDs and neuronal somas. Purkinje cells respond somewhat differently to delayed perfusion fixation, perhaps owing to their lower levels of CaMKII, and CaMKII binding proteins at PSDs. We present here a catalogue of structural changes that signal a perfusion fixation delay, thereby providing criteria by which to assess perfusion fixation quality in experimental structural studies of brain and to shed light on the subtle changes that occur in intact brain following metabolic stress. J. Comp. Neurol. 501:731–740, 2007.


Journal of Neurocytology | 2000

Snap-25 is polarized to axons and abundant along the axolemma: an immunogold study of intact neurons

Jung-Hwa Tao-Cheng; Jing Du; Chris J. McBain

SNAP-25, synaptosomal associated protein of 25 kDa, is reported to be a t-SNARE (target receptor associated with the presynaptic plasma membrane) involved in the docking and fusion of synaptic vesicles. We present here the first ultrastructural localization of SNAP-25 in intact neurons by pre-embedding EM immunocytochemistry in rat brains, hippocampal slice cultures, and PC12 cells. In differentiated neurons, SNAP-25 labeling was clearly membrane-associated. The labeling was most prominent in the plasma membrane of axons and excluded from the plasma membranes of soma and dendrites. Furthermore, SNAP-25 did not appear to be restricted to the synaptic junctions. SNAP-25 labeling was seen in the cytoplasm of the soma and large dendrites, mostly associated with the Golgi complexes. There were also some SNAP-25 labeled tubulo-vesicular structures in the cytoplasm of the soma and the axons, but rarely in the smaller dendrites. In PC12 cells, after 5–10 minutes of high potassium (75 mM) stimulation in the presence of HRP, SNAP-25 labeling appeared, additionally, on HRP-filled early endosomes. After a longer (20–30 minutes) HRP incubation, most of the later stage endosomes and lysosomes were loaded with HRP but they were negative for SNAP-25. These results suggest that SNAP-25 is sorted out of these late endosomal compartments, and that the bulk of the SNAP-25 protein is probably recycled back to the axolemma from the early endosomes. In contrast, in those samples which were incubated with HRP for longer periods, there were still some SNAP-25–positive vesicular structures which were HRP-negative. These structures most likely represent anterograde vesicles that carry newly synthesized SNAP-25 from the soma to the axolemma by axonal transport. SNAP-25 appears to be sorted at the Golgi complex to reach the axolemma specifically. Its widespread distribution all along the axolemma does not support the view of SNAP-25 as a t-SNARE limited for synaptic exocytosis.


The Journal of Neuroscience | 2011

Trafficking of AMPA Receptors at Plasma Membranes of Hippocampal Neurons

Jung-Hwa Tao-Cheng; Virginia Crocker; Christine A. Winters; Rita Azzam; John Chludzinski; Thomas S. Reese

The number of AMPA receptors at synapses depends on receptor cycling. Because receptors diffuse rapidly in plasma membranes, their exocytosis and endocytosis need not occur near synapses. Here, pre-embedding immunogold electron microscopy is applied to dissociated rat hippocampal cultures to provide sensitive, high-resolution snapshots of the distribution of surface AMPA receptors in spines, dendrites, and cell bodies that will be informative about trafficking of AMPA receptors. The density of the label for GluR2 varies, but is consistent throughout cell body and dendrites in each individual neuron, except at postsynaptic densities (PSDs), where it is typically higher. Glutamate receptor 2 (GluR2) labels at PSDs significantly increase after synaptic activation by glycine treatment and increase further upon depolarization by high K+. Islands of densely packed labels have consistent size and density but vary in frequency under different experimental conditions. These patches of label, which occur on plasma membranes of cell bodies and dendrites but not near PSDs, are taken to be the aftermath of exocytosis of AMPA receptors. A subpopulation of clathrin-coated pits in cell bodies and dendrites label for GluR2, and the number and amount of label in individual pits increase after NMDA treatment. Coated pits near synapses typically lack GluR2 label under basal conditions, but ∼40% of peri-PSD pits label for GluR2 after NMDA treatment. Thus, exocytosis and endocytosis of AMPA receptors occur mainly at extrasynaptic locations on cell bodies and dendrites. Receptors are not preferentially exocytosed near PSDs, but may be removed via endocytosis at peri-PSD locations after activation of NMDA receptors.


Neuroscience | 2001

Sustained elevation of calcium induces ca2+/calmodulin-dependent protein kinase II clusters in hippocampal neurons

Jung-Hwa Tao-Cheng; Lucia Vinade; C Smith; Christine A. Winters; R Ward; M.W Brightman; Thomas S. Reese; A. Dosemeci

Treatment of cultured hippocampal neurons with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) in the absence of glucose mimics ischemic energy depletion and induces formation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) clusters, spherical structures with diameters of 75-175 nm [Dosemeci et al., J. Neurosci. 20 (2000) 3076-3084]. The demonstration that CaMKII clustering occurs in the intact, adult rat brain upon interruption of blood flow indicates that clustering is not confined to cell cultures. Application of N-methyl-D-aspartate (250 microM, 15 min) to hippocampal cultures also induces cluster formation, suggesting a role for Ca(2+). Indeed, intracellular Ca(2+) monitored with Fluo3-AM by confocal microscopy reaches a sustained high level within 5 min of CCCP treatment. The appearance of immunolabeled CaMKII clusters, detected by electron microscopy, follows the onset of the sustained increase in intracellular Ca(2+). Moreover, CaMKII does not cluster when the rise in intracellular Ca(2+) is prevented by the omission of extracellular Ca(2+) during CCCP treatment, confirming that clustering is Ca(2+)-dependent. A lag period of 1-2 min between the onset of high intracellular Ca(2+) levels and the formation of CaMKII clusters suggests that a sustained increase in Ca(2+) level is necessary for the clustering. CaMKII clusters disappear within 2 h of returning the cultures to normal incubation conditions, at which time no significant cell death is detected. These results indicate that pathological conditions that promote sustained episodes of Ca(2+) overload result in a transitory clustering of CaMKII into spherical structures. CaMKII clustering may represent a cellular defense mechanism to sequester a portion of the CaMKII pool, thereby preventing excessive protein phosphorylation.

Collaboration


Dive into the Jung-Hwa Tao-Cheng's collaboration.

Top Co-Authors

Avatar

Thomas S. Reese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ayse Dosemeci

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christine A. Winters

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yijung Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

A. Dosemeci

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Milton W. Brightman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lucia Vinade

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

K. Ulrich Bayer

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Lee E. Eiden

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul E. Gallant

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge