Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung-Hyun Lee is active.

Publication


Featured researches published by Jung-Hyun Lee.


Nature | 2010

Formate-driven growth coupled with H2 production

Yun Jae Kim; Hyun Sook Lee; Eun Sook Kim; Seung Seob Bae; Jae Kyu Lim; Rie Matsumi; Alexander V. Lebedinsky; Tatyana G. Sokolova; Darya A. Kozhevnikova; Sun Shin Cha; Sang-Jin Kim; Kae Kyoung Kwon; Tadayuki Imanaka; Haruyuki Atomi; Elizaveta A. Bonch-Osmolovskaya; Jung-Hyun Lee; Sung Gyun Kang

Although a common reaction in anaerobic environments, the conversion of formate and water to bicarbonate and H2 (with a change in Gibbs free energy of ΔG° = +1.3 kJ mol−1) has not been considered energetic enough to support growth of microorganisms. Recently, experimental evidence for growth on formate was reported for syntrophic communities of Moorella sp. strain AMP and a hydrogen-consuming Methanothermobacter species and of Desulfovibrio sp. strain G11 and Methanobrevibacter arboriphilus strain AZ. The basis of the sustainable growth of the formate-users is explained by H2 consumption by the methanogens, which lowers the H2 partial pressure, thus making the pathway exergonic. However, it has not been shown that a single strain can grow on formate by catalysing its conversion to bicarbonate and H2. Here we report that several hyperthermophilic archaea belonging to the Thermococcus genus are capable of formate-oxidizing, H2-producing growth. The actual ΔG values for the formate metabolism are calculated to range between −8 and −20 kJ mol−1 under the physiological conditions where Thermococcus onnurineus strain NA1 are grown. Furthermore, we detected ATP synthesis in the presence of formate as a sole energy source. Gene expression profiling and disruption identified the gene cluster encoding formate hydrogen lyase, cation/proton antiporter and formate transporter, which were responsible for the growth of T. onnurineus NA1 on formate. This work shows formate-driven growth by a single microorganism with protons as the electron acceptor, and reports the biochemical basis of this ability.


Journal of Bacteriology | 2008

The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism.

Hyun Sook Lee; Sung Gyun Kang; Seung Seob Bae; Jae Kyu Lim; Yona Cho; Yun Jae Kim; Jeong Ho Jeon; Sun-Shin Cha; Kae Kyoung Kwon; Hyungtae Kim; Cheol-Joo Park; Heewook Lee; Seung Il Kim; Jongsik Chun; Rita R. Colwell; Sang-Jin Kim; Jung-Hyun Lee

Members of the genus Thermococcus, sulfur-reducing hyperthermophilic archaea, are ubiquitously present in various deep-sea hydrothermal vent systems and are considered to play a significant role in the microbial consortia. We present the complete genome sequence and feature analysis of Thermococcus onnurineus NA1 isolated from a deep-sea hydrothermal vent area, which reveal clues to its physiology. Based on results of genomic analysis, T. onnurineus NA1 possesses the metabolic pathways for organotrophic growth on peptides, amino acids, or sugars. More interesting was the discovery that the genome encoded unique proteins that are involved in carboxydotrophy to generate energy by oxidation of CO to CO(2), thereby providing a mechanistic basis for growth with CO as a substrate. This lithotrophic feature in combination with carbon fixation via RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) introduces a new strategy with a complementing energy supply for T. onnurineus NA1 potentially allowing it to cope with nutrient stress in the surrounding of hydrothermal vents, providing the first genomic evidence for the carboxydotrophy in Thermococcus.


The EMBO Journal | 2010

Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber

Sun-Shin Cha; Young Jun An; Chang Ro Lee; Hyun Sook Lee; Yeon-Gil Kim; Sang-Jin Kim; Kae Kyoung Kwon; Gian Marco De Donatis; Jung-Hyun Lee; Michael R. Maurizi; Sung Gyun Kang

Lon proteases are distributed in all kingdoms of life and are required for survival of cells under stress. Lon is a tandem fusion of an AAA+ molecular chaperone and a protease with a serine‐lysine catalytic dyad. We report the 2.0‐Å resolution crystal structure of Thermococcus onnurineus NA1 Lon (TonLon). The structure is a three‐tiered hexagonal cylinder with a large sequestered chamber accessible through an axial channel. Conserved loops extending from the AAA+ domain combine with an insertion domain containing the membrane anchor to form an apical domain that serves as a gate governing substrate access to an internal unfolding and degradation chamber. Alternating AAA+ domains are in tight‐ and weak‐binding nucleotide states with different domain orientations and intersubunit contacts, reflecting intramolecular dynamics during ATP‐driven protein unfolding and translocation. The bowl‐shaped proteolytic chamber is contiguous with the chaperone chamber allowing internalized proteins direct access to the proteolytic sites without further gating restrictions.


Current Opinion in Biotechnology | 2010

Approaches for novel enzyme discovery from marine environments

Hyun Sook Lee; Kae Kyoung Kwon; Sung Gyun Kang; Sun-Shin Cha; Sang-Jin Kim; Jung-Hyun Lee

The enormous pool of biodiversity in marine ecosystems is an excellent natural reservoir for acquiring an inventory of enzymes with potential for biotechnological applications. Moreover, the opportunity for sustainable resource management has been greatly enhanced by recent advances in culturing methods for recalcitrant microbes. In this review, we will focus primarily on successful examples in culturing marine microbes and provide an overview of work examining the biotechnological potential of the marine reservoir, mainly through genomic strategies, such as activity-based functional screening of genomic and metagenomic libraries and homology-driven screening of enormous amounts of sequence data.


Applied and Environmental Microbiology | 2013

CO-Dependent H2 Production by Genetically Engineered Thermococcus onnurineus NA1

Min-Sik Kim; Seung Seob Bae; Yun Jae Kim; Tae Wan Kim; Jae Kyu Lim; Seong Hyuk Lee; Ae Ran Choi; Jeong Ho Jeon; Jung-Hyun Lee; Hyun Sook Lee; Sung Gyun Kang

ABSTRACT Hydrogenogenic CO oxidation (CO + H2O → CO2 + H2) has the potential for H2 production as a clean renewable fuel. Thermococcus onnurineus NA1, which grows on CO and produces H2, has a unique gene cluster encoding the carbon monoxide dehydrogenase (CODH) and the hydrogenase. The gene cluster was identified as essential for carboxydotrophic hydrogenogenic metabolism by gene disruption and transcriptional analysis. To develop a strain producing high levels of H2, the gene cluster was placed under the control of a strong promoter. The resulting mutant, MC01, showed 30-fold-higher transcription of the mRNA encoding CODH, hydrogenase, and Na+/H+ antiporter and a 1.8-fold-higher specific activity for CO-dependent H2 production than did the wild-type strain. The H2 production potential of the MC01 mutant in a bioreactor culture was 3.8-fold higher than that of the wild-type strain. The H2 production rate of the engineered strain was severalfold higher than those of any other CO-dependent H2-producing prokaryotes studied to date. The engineered strain also possessed high activity for the bioconversion of industrial waste gases created as a by-product during steel production. This work represents the first demonstration of H2 production from steel mill waste gas using a carboxydotrophic hydrogenogenic microbe.


Biomolecular Engineering | 2003

Diversity of symbiotic archaeal communities in marine sponges from Korea

Eun Young Lee; Hong Kum Lee; Yoo Kyung Lee; Chung Ja Sim; Jung-Hyun Lee

A molecular analysis of archaeal communities in eight sponges collected along the coast of Cheju Island, Korea was conducted using terminal-restriction fragment length polymorphism (T-RFLP) in conjunction with sequencing analysis of 16S rDNA clones. The terminal-restriction fragment (T-RF) profiles showed that each sponge had a simple archaeal community represented by a single major peak of the same size except for one unidentified sponge (01CJ20). In order to identify the components of the community, 170 archaeal 16S rDNA clones were recovered from sponges and analyzed by RFLP typing. Sequences of 19 representative clones for all RFLP types found in each sponge were determined and phylogenetic analysis was carried out. Seventeen of these archaeal 16S rDNA clones showed a high similarity to marine group I, belonging to the crenarchaeotes. In the phylogenetic tree, 15 archaeal clones were grouped into five sponge-associated archaeal clusters. In the unidentified sponge sample (01CJ20), one major T-RF peak was represented by a single RFLP type (40 clones), which implied a specific relationship between the sponge and its symbiotic archaeal components.


Genome Biology and Evolution | 2015

Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae

Eun Chan Yang; Kyeong Mi Kim; Su Yeon Kim; JunMo Lee; Ga Hun Boo; Jung-Hyun Lee; Wendy A. Nelson; Gangman Yi; William E. Schmidt; Suzanne Fredericq; Sung Min Boo; Debashish Bhattacharya; Hwan Su Yoon

Two red algal classes, the Florideophyceae (approximately 7,100 spp.) and Bangiophyceae (approximately 193 spp.), comprise 98% of red algal diversity in marine and freshwater habitats. These two classes form well-supported monophyletic groups in most phylogenetic analyses. Nonetheless, the interordinal relationships remain largely unresolved, in particular in the largest subclass Rhodymeniophycidae that includes 70% of all species. To elucidate red algal phylogenetic relationships and study organelle evolution, we determined the sequence of 11 mitochondrial genomes (mtDNA) from 5 florideophycean subclasses. These mtDNAs were combined with existing data, resulting in a database of 25 florideophytes and 12 bangiophytes (including cyanidiophycean species). A concatenated alignment of mt proteins was used to resolve ordinal relationships in the Rhodymeniophycidae. Red algal mtDNA genome comparisons showed 47 instances of gene rearrangement including 12 that distinguish Bangiophyceae from Hildenbrandiophycidae, and 5 that distinguish Hildenbrandiophycidae from Nemaliophycidae. These organelle data support a rapid radiation and surprisingly high conservation of mtDNA gene syntheny among the morphologically divergent multicellular lineages of Rhodymeniophycidae. In contrast, we find extensive mitochondrial gene rearrangements when comparing Bangiophyceae and Florideophyceae and multiple examples of gene loss among the different red algal lineages.


Biotechnology Advances | 2015

One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity

Simon Rittmann; Hyun Sook Lee; Jae Kyu Lim; Tae Wan Kim; Jung-Hyun Lee; Sung Gyun Kang

Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates.


Applied and Environmental Microbiology | 2012

Thermodynamics of formate-oxidizing metabolism and implications for H2 production.

Jae Kyu Lim; Seung Seob Bae; Tae Wan Kim; Jung-Hyun Lee; Hyun Sook Lee; Sung Gyun Kang

ABSTRACT Formate-dependent proton reduction to H2 (HCOO− + H2O → HCO3 − + H2) has been reported for hyperthermophilic Thermococcus strains. In this study, a hyperthermophilic archaeon, Thermococcus onnurineus strain NA1, yielded H2 accumulation to a partial pressure of 1 × 105 to 7 × 105 Pa until the values of Gibbs free energy change (ΔG) reached near thermodynamic equilibrium (−1 to −3 kJ mol−1). The bioenergetic requirement for the metabolism to conserve energy was demonstrated by ΔG values as small as −5 kJ mol−1, which are less than the biological minimum energy quantum, −20 kJ mol−1, as calculated by Schink (B. Schink, Microbiol. Mol. Biol. Rev. 61:262-280, 1997). Considering formate as a possible H2 storage material, the H2 production potential of the strain was assessed. The volumetric H2 production rate increased linearly with increasing cell density, leading to 2,820 mmol liter−1 h−1 at an optical density at 600 nm (OD600) of 18.6, and resulted in the high specific H2 production rates of 404 ± 6 mmol g−1 h−1. The H2 productivity indicates the great potential of T. onnurineus strain NA1 for practical application in comparison with H2-producing microbes. Our result demonstrates that T. onnurineus strain NA1 has a highly efficient metabolic system to thrive on formate in hydrothermal systems.


Journal of Bacteriology | 2011

Complete Genome Sequence of Hyperthermophilic Pyrococcus sp. Strain NA2, Isolated from a Deep-Sea Hydrothermal Vent Area

Hyun Sook Lee; Seung Seob Bae; Min-Sik Kim; Kae Kyoung Kwon; Sung Gyun Kang; Jung-Hyun Lee

Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent sample, is a novel marine hyperthermophilic archaeon that grows optimally at 93 °C. The complete genome sequence of the strain contains all the genes for the tricarboxylic acid cycle except for succinate dehydrogenase/fumarate reductase, but the genome does not encode proteins involved in polysaccharide utilization.

Collaboration


Dive into the Jung-Hyun Lee's collaboration.

Top Co-Authors

Avatar

Sung Gyun Kang

Korean Ocean Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar

Sang-Jin Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyun Sook Lee

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seung Seob Bae

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kae Kyoung Kwon

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Kyu Lim

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Sook Lee

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sun-Shin Cha

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge