Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung Weon Lee is active.

Publication


Featured researches published by Jung Weon Lee.


The FASEB Journal | 2005

STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells

Joo Eun Jung; Hyun Gyu Lee; Ik Hyun Cho; Doo Hyun Chung; Sun-Hee Yoon; Young Mok Yang; Jung Weon Lee; Seongwon Choi; Jong-Wan Park; Sang-Kyu Ye; Myung-Hee Chung

Aberrantly enhanced vascular endothelial growth factor (VEGF) gene expression is associated with increased tumor growth and metastatic spread of solid malignancies, including human renal carcinomas. Persistent activation of STAT3 is linked to tumor‐associated angiogenesis, but underlying mechanisms remain unclear. Therefore, we examined whether STAT3 modulates the stability and activity of hypoxia‐inducible factor‐1α (HIF‐1α), and in turn enhances VEGF expression. We found that STAT3 was activated in ischemic rat kidneys and hypoxic human renal carcinoma cells. We also found that hypoxia‐induced activation of STAT3 transactivated the VEGF promoter and increased the expression of VEGF transcripts. Consistent with these findings, STAT3 inhibition attenuated the hypoxic induction of VEGF. Interestingly, activated STAT3 increased HIF‐1α protein levels due to the HIF‐1α stability by blocking HIF‐1α degradation and accelerated its de novo synthesis. The novel interaction of STAT3 with HIF‐1α was identified in hypoxic renal carcinoma cells. Furthermore, hypoxia recruited STAT3, HIF‐1α, and p300 to the VEGF promoter and induced histone H3 acetylation. Therefore, these findings provide compelling evidence that a causal relationship exists between STAT3 activation and HIF‐1‐dependent angiogenesis and suggest that therapeutic modalities designed to disrupt STAT3 signaling hold considerable promise for the blocking tumor growth and enhancing apoptosis of cancer cells and tissues.


Clinical Cancer Research | 2004

Class I Histone Deacetylase-Selective Novel Synthetic Inhibitors Potently Inhibit Human Tumor Proliferation

Junghyun Park; Yeonjoo Jung; Tai Young Kim; Sang Gyun Kim; Hyun-Soon Jong; Jung Weon Lee; Kim Dw; Jong-Soo Lee; Noe Kyeong Kim; Tae-You Kim; Yung-Jue Bang

We have developed previously a class of synthetic hybrid histone deacetylase (HDAC) inhibitors, which were built from hydroxamic acid of trichostatin A and pyridyl ring of MS-275. In this study we evaluated the antitumor effects of these novel hybrid synthetic HDAC inhibitors, SK-7041 and SK-7068, on human cancer cells. Both SK-7041 and SK-7068 effectively inhibited cellular HDAC activity at nanomolar concentrations and induced the time-dependent hyperacetylation of histones H3 and H4. These HDAC inhibitors preferentially inhibited the enzymatic activities of HDAC1 and HDAC2, as compared with the other HDAC isotypes, indicating that class I HDAC is the major target of SK-7041 and SK-7068. We found that these compounds exhibited potent antiproliferative activity against various human cancer cells in vitro. Growth inhibition effect of SK-7041 and SK-7068 was related with the induction of aberrant mitosis and apoptosis in human gastric cancer cells. Both compounds induced the accumulation of cells at mitosis after 6 h of treatment, which was demonstrated by accumulation of tetraploid cells, lack of G2 cyclin/cyclin-dependent kinase inactivation, and higher mitotic index. After 12 h of treatment, apoptotic cells were increased through mitochondrial and caspase-mediated pathway. Finally, in vivo experiment showed that SK-7041 or SK-7068 was found to reduce the growth of implanted human tumors in nude mice. Therefore, based on isotype specificity and antitumor activity, SK-7041 and SK-7068 HDAC inhibitors are expected to be promising anticancer therapeutic agents and need additional clinical development.


Oncogene | 2003

Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells

Tai Young Kim; Hyun-Soon Jong; Sang-Hyun Song; Alexandre Dimtchev; Sook-Jung Jeong; Jung Weon Lee; Tae-You Kim; Noe Kyeong Kim; Mira Jung; Yung-Jue Bang

DLC-1 (deleted in liver cancer) gene is frequently deleted in hepatocellular carcinoma. However, little is known about the genetic status and the expression of this gene in gastric cancer. In this study, Northern and Southern analysis showed that seven of nine human gastric cancer cell lines did not express DLC-1 mRNA, but contained the DLC-1 gene. To identify the mechanism of the loss of DLC-1 mRNA expression in these cell lines, we investigated the methylation status of DLC-1 gene by using methylation-specific PCR (MSP) and Southern blot, and found that five of seven DLC-1 nonexpressing gastric cancer cell lines were methylated in the DLC-1 CpG island. Treatment with 5-aza-2′-deoxycytidine (5-Aza-dC) induced DLC-1 mRNA expression in the gastric cancer cell lines that have the methylated alleles. Studies using SNU-601 cell line with methylated DLC-1 alleles revealed that nearly all CpG sites within DLC-1 CpG island were methylated, and that the in vitro methylation of the DLC-1 promoter region is enough to repress DLC-1 mRNA expression, regardless of the presence of transcription factors capable of inducing this gene. In all, 29 of 97 (30%) primary gastric cancers were also shown to be methylated, demonstrating that methylation of the DLC-1 CpG island is not uncommon in gastric cancer. In addition, we demonstrated that DLC-1 mRNA expression was induced, and an increase in the level of acetylated H3 and H4 was detected by the treatment with trichostatin A (TSA) in two DLC-1 nonexpressing cell lines that have the unmethylated alleles. Taken together, the results of our study suggest that the transcriptional silencing of DLC-1, by epigenetic mechanism, may be involved in gastric carcinogenesis.


Oncogene | 2004

AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity.

Moon-Chang Choi; Hyun-Soon Jong; Tai Young Kim; Sang-Hyun Song; Dong Soon Lee; Jung Weon Lee; Tae-You Kim; Noe Kyeong Kim; Yung-Jue Bang

AKAP12/Gravin, one of the A-kinase anchoring proteins (AKAPs), functions as a kinase scaffold protein and as a dynamic regulator of the β2-adrenergic receptor complex. However, the biological role of AKAP12 in cancer development is not well understood. The AKAP12 gene encodes two major isoforms of 305 and 287 kDa (designated AKAP12A and AKAP12B, respectively, in this report). We found that these two isoforms are independently expressed and that they are probably under the control of two different promoters. Moreover, both isoforms were absent from the majority of human gastric cancer cells. The results from methylation-specific PCR (MSP) and bisulfite sequencing revealed that the 5′ CpG islands of both AKAP12A and AKAP12B are frequently hypermethylated in gastric cancer cells. Treatment with DNA methyltransferase inhibitor and/or histone deacetylase inhibitor efficiently restored the expression of AKAP12 isoforms, confirming that DNA methylation is directly involved in the transcriptional silencing of AKAP12 in gastric cancer cells. Hypermethylation of AKAP12A CpG island was also detected in 56% (10 of 18) of primary gastric tumors. The restoration of AKAP12A in AKAP12-nonexpressing cells reduced colony formation and induced apoptotic cell death. In conclusion, our results suggest that AKAP12A may function as an important negative regulator of the survival pathway in human gastric cancer.


Journal of Clinical Investigation | 2008

Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial-mesenchymal transition in human hepatocarcinoma

Sin-Ae Lee; Sung-Yul Lee; Ik-Hyun Cho; Min-A Oh; Eun-Sil Kang; Yong-Bae Kim; Woo Duck Seo; Suyong Choi; Ju-Ock Nam; Mimi Tamamori-Adachi; Shigetaka Kitajima; Sang-Kyu Ye; Semi Kim; Yoon-Jin Hwang; In-San Kim; Ki Hun Park; Jung Weon Lee

The growth of normal cells is arrested when they come in contact with each other, a process known as contact inhibition. Contact inhibition is lost during tumorigenesis, resulting in uncontrolled cell growth. Here, we investigated the role of the tetraspanin transmembrane 4 superfamily member 5 (TM4SF5) in contact inhibition and tumorigenesis. We found that TM4SF5 was overexpressed in human hepatocarcinoma tissue. TM4SF5 expression in clinical samples and in human hepatocellular carcinoma cell lines correlated with enhanced p27Kip1 expression and cytosolic stabilization as well as morphological elongation mediated by RhoA inactivation. These TM4SF5-mediated effects resulted in epithelial-mesenchymal transition (EMT) via loss of E-cadherin expression. The consequence of this was aberrant cell growth, as assessed by S-phase transition in confluent conditions, anchorage-independent growth, and tumor formation in nude mice. The TM4SF5-mediated effects were abolished by suppressing the expression of either TM4SF5 or cytosolic p27Kip1, as well as by reconstituting the expression of E-cadherin. Our observations have revealed a role for TM4SF5 in causing uncontrolled growth of human hepatocarcinoma cells through EMT.


Cancer Research | 2005

Cyclooxygenase-2 Inhibits Novel Ginseng Metabolite-Mediated Apoptosis

Hyung Woo Yim; Hyun-Soon Jong; Tai Young Kim; Hyun Ho Choi; Sang Gyun Kim; Sang Hyun Song; Juyong Kim; Seonggyu Ko; Jung Weon Lee; Tae-You Kim; Yung-Jue Bang

Recently, a novel intestinal bacterial metabolite of ginseng protopanaxadiol saponins, i.e., 20-O-(beta-D-glucopyranosyl)-20(S)-protopanaxadiol (IH-901), has been reported to induce apoptosis in a variety of cancer cells. Here we show a differential effect of IH-901 on several cell types. Exposure to IH-901 for 48 hours at a supposedly subapoptotic concentration of 40 mumol/L led to both apoptotic cell death and G1 arrest in Hep3B cells, but only resulted in G1 arrest in MDA-MB-231, Hs578T, and MKN28 cells. Additionally, the treatment of MDA-MB-231, but not of Hep3B, with IH-901 up-regulated cyclooxygenase-2 (COX-2) mRNA (2 hours) and protein (6 hours), and enhanced the production of prostaglandin E2. In MDA-MB-231 cells, IH-901 induced the sustained activation of extracellular signal-regulated kinase (ERK), whereas inhibition of mitogen-activated protein/ERK kinase blocked IH-901-mediated COX-2 induction and resulted in apoptosis, suggesting the involvement of an ERK-COX-2 pathway. Combined treatment with IH-901 and nonsteroidal anti-inflammatory drugs inhibited COX-2 enzyme and induced apoptosis in MDA-MB-231 and Hs578T cells. Adenovirus-mediated COX-2 small interfering RNAs also effectively inhibited COX-2 protein expression and enhanced IH-901-mediated apoptosis without inhibiting ERK 1/2 phosphorylation, thus providing direct evidence that COX-2 is an antiapoptotic molecule. Moreover, IH-901-mediated G1 arrest resulted from an increase in p27Kip1 mRNA and protein expression followed by a decrease in CDK2 kinase activity that was concurrent with the hypophosphorylation of Rb and p130. In conclusion, IH-901 induced both G1 arrest and apoptosis, and this apoptosis could be inhibited by COX-2 induction.


Experimental Cell Research | 2008

O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic β cells

Eun-Sil Kang; Dohyun Han; Jung-Eun Park; Tae Kyoung Kwak; Min-A Oh; Sin-Ae Lee; Suyong Choi; Zee Yong Park; Youngsoo Kim; Jung Weon Lee

O-GlcNAc transferase (OGT)-mediated modification of protein Ser/Thr residues with O-GlcNAc influences protein activity, similar to the effects of phosphorylation. The anti-apoptotic Akt1 is both activated by phosphorylation and modified with O-GlcNAc. However, the nature and significance of the Akt1 O-GlcNAc modification is unknown. The relationship of O-GlcNAc modification and phosphorylation at Akt1 Ser473 was examined with respect to apoptosis of murine beta-pancreatic cells. Glucosamine treatment induced apoptosis, which correlated with enhanced O-GlcNAc modification of Akt1 and concomitant reduction in Ser473 phosphorylation. Pharmacological inhibition of OGT or O-GlcNAcase revealed an inverse correlation between O-GlcNAc modification and Ser473 phosphorylation of Akt1. MALDI-TOF/TOF mass spectrometry analysis of Akt1 immunoprecipitates from glucosamine-treated cells, but not untreated controls, showed a peptide containing S473/T479 that was presumably modified with O-GlcNAc. Furthermore, in vitro O-GlcNAc-modification analysis of wildtype and mutant Akt1 revealed that S473 was targeted by recombinant OGT. A S473A Akt1 mutant demonstrated reduced basal and glucosamine-induced Akt1 O-GlcNAc modification compared with wildtype Akt1. Furthermore, wildtype Akt1, but not the S473A mutant, appeared to be associated with OGT following glucosamine treatment. Together, these observations suggest that Akt1 Ser473 may undergo both phosphorylation and O-GlcNAc modification, and the balance between these may regulate murine beta-pancreatic cell fate.


Oncogene | 2004

Ras-dependent induction of HIF-1α785 via the Raf/MEK/ERK pathway: a novel mechanism of Ras-mediated tumor promotion

Ji-Hong Lim; Eun-Seo Lee; Ho-Jin You; Jung Weon Lee; Jong-Wan Park; Yang-Sook Chun

Hypoxia-inducible factor-1alpha (HIF-1α) plays crucial roles in tumor promotion by transactivating approximately 60 kinds of its target genes. Recently, we reported a novel splice variant HIF-1α785, which is regulated primarily by phorbol ester. This variant can be stabilized under normoxic conditions because it loses an acetylation site Lys532. Its expression was found to promote xenografted tumor growth in nude mice. We here found that the Ras oncogene regulates HIF-1α785 expression via the Raf/MEK/ERK pathway, and that both phorbol ester and epidermal growth factor also induced HIF-1α785 via the same pathway. We also identified the nonhypoxic regulatory domain responsible for phorbol ester-induced HIF-1α785 expression. These results imply that HIF-1α785 may play an important role in tumor promotion mediated by the Ras oncogene, phorbol ester or tumor growth factors.


Carcinogenesis | 2010

TMPRSS4 induces invasion and epithelial–mesenchymal transition through upregulation of integrin α5 and its signaling pathways

Semi Kim; Hee Young Kang; Eun-Hee Nam; Myung-Sook Choi; Xue-Feng Zhao; Chang Soo Hong; Jung Weon Lee; Jae Hyuk Lee; Young-Kyu Park

TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid and other cancer tissues, although its oncogenic significance and molecular mechanisms are unknown. Previously, we have shown that TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition (EMT). In this study, we explored the molecular basis underlying TMPRSS4-mediated effects. We show that multiple downstream signaling pathways, including focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), Akt, Src and Rac1, are activated by TMPRSS4 expression and that FAK signaling and ERK activation are required for TMPRSS4-induced invasiveness and EMT, including cadherin switch. Inhibition of PI3K or Src reduced invasiveness and actin rearrangement mediated by TMPRSS4 without restoring E-cadherin expression. Downregulation of E-cadherin was required for TMPRSS4-mediated effects but was not sufficient to induce EMT and invasion. TMPRSS4 induced integrin alpha5 expression and its signal transduction, leading to invasiveness and EMT accompanied by downregulation of E-cadherin. Functional blocking confirmed that integrin alpha5beta1 is a critical signaling molecule that is sufficient to induce TMPRSS4-mediated effects. Immunohistochemical analysis showed that TMPRSS4 expression was significantly higher in human colorectal cancer tissues from advanced stages than in that of early stage. Furthermore, upregulation of TMPRSS4 was correlated with enhanced integrin alpha5 expression. These observations implicate integrin alpha5 upregulation as a molecular mechanism by which TMPRSS4 induces invasion and contributes to cancer progression.


Free Radical Biology and Medicine | 2008

Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microglia

Hong Sook Kim; Ik Hyun Cho; Ja-Eun Kim; Yong Jae Shin; Ju-Hong Jeon; Youngsoo Kim; Young Mok Yang; Kwang Ho Lee; Jung Weon Lee; Wang-Jae Lee; Sang-Kyu Ye; Myung-Hee Chung

Ethyl pyruvate (EP) has been demonstrated to have an anti-inflammatory function. However, the molecular mechanisms underlying the anti-inflammatory action of EP are largely unknown. We here show that EP exerts its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity, like vitamin C or N-acetyl-L-cysteine. The inhibition of STAT1 and STAT3 by EP prevented their translocation to the nucleus and consequently inhibited expression of iNOS and COX-2 by inhibiting STAT1- and STAT3-mediated transcriptional activity, followed by changes in chromatin conformation via deacetylation of histones H3 and H4 in both gene promoters. EP also suppressed transcripts of other STAT-responsive inflammatory genes such as IL-1beta, IL-6, TNF-alpha, and MCP-1. We further found that the mechanism of inhibition of STAT1 and STAT3 by EP is due to inhibition of JAK2 through Rac1 inactivation and SOCS1 induction. These findings offer new therapeutic possibilities for EP based on a better understanding of the mechanism underlying the action of EP.

Collaboration


Dive into the Jung Weon Lee's collaboration.

Top Co-Authors

Avatar

Minkyung Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sin-Ae Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Mi-Sook Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jihye Ryu

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Tae-You Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Kyu Ye

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yung-Jue Bang

Seoul National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Hyun-Soon Jong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seo Hee Nam

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge