Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung Woo Leem is active.

Publication


Featured researches published by Jung Woo Leem.


Optics Express | 2012

Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns.

Jung Woo Leem; Yunhae Yeh; Jae Su Yu

We fabricated surface nanostructures with different pillar and cone shapes on glass substrates using thermally dewetted gold (Au) nanoparticles as etch masks by dry etching. Their optical total transmittance characteristics, together with theoretical predictions using rigorous coupled-wave analysis simulation, and wetting behaviors were investigated. The nanostructured glass substrates strongly enhanced the surface transmission compared to the flat glass substrate. The glass nanocones with a linearly graded effective refractive index profile exhibited better transmission properties than the glass nanopillars due to the lower surface reflectance, thus leading to higher average transmittance with increasing their height. For the glass nanocones with a period of 106 ± 39 nm at the Au film thickness of 5 nm, the higher average total transmittance (Tave) and solar weighted transmittance (SWT) of ~95.5 and ~95.8% at wavelengths of 300-1100 nm and the lower contact angle (θc) of 31° were obtained compared to the flat glass substrate (i.e., Tave~92.7%, SWT~92.7%, and θc~65°). The calculated total transmittance results showed a similar tendency to the experimental results.


Advanced Materials | 2016

An Ultrahigh‐Performance Photodetector based on a Perovskite–Transition‐Metal‐Dichalcogenide Hybrid Structure

Dong-Ho Kang; Seong Ryul Pae; Jaewoo Shim; Gwangwe Yoo; Jaeho Jeon; Jung Woo Leem; Jae Su Yu; Sungjoo Lee; Byungha Shin; Jin-Hong Park

An ultrahigh performance MoS2 photodetector with high photoresponsivity (1.94 × 10(6) A W(-1) ) and detectivity (1.29 × 10(12) Jones) under 520 nm and 4.63 pW laser exposure is demonstrated. This photodetector is based on a methyl-ammonium lead halide perovskite/MoS2 hybrid structure with (3-aminopropyl)triethoxysilane doping. The performance degradation caused by moisture is also minimized down to 20% by adopting a new encapsulation bilayer of octadecyltrichlorosilane/polymethyl methacrylate.


Optics Express | 2011

Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells

Jung Woo Leem; Jae Su Yu

Indium tin oxide (ITO) thin films with relatively high transparency and low absorption are prepared by glancing angle deposition (GLAD) method and their effect on the device performance of a-Si:H/μc-Si:H tandem thin film solar cells is theoretically investigated by applying the experimentally measured physical data of the fabricated films to the simulation parameters. The GLAD of ITO produces inclined porous columnar nanostructures due to the atomic shadowing effect. With increasing the incident flux angle, the columns are increasingly inclined, thus resulting in the improved transmission property as well as the decrease of the refractive index and extinction coefficient because of enhanced porosity within the film. Furthermore, the antireflection characteristics are improved over a wide wavelength range of 300-1100 nm. For a-Si:H/μc-Si:H tandem thin film solar cell structure incorporated with the 0° ITO/80° ITO bi-layer structure, the conversion efficiency (η) of 13.6% is obtained from simulation under AM1.5g illumination, indicating an efficiency improvement compared to the device with the 0° ITO/0° ITO bi-layer structure (i.e. η = 12.58%).


Optics Express | 2011

Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells

Jung Woo Leem; Young Min Song; Jae Su Yu

Broadband wide-angle antireflection characteristics of aluminum-doped zinc oxide (AZO)/silicon (Si) shell/core subwavelength grating (SWG) structures with a hydrophobic surface, together with theoretical prediction using a rigorous coupled-wave analysis simulation, were investigated for Si-based solar cells. The AZO films with different thicknesses were deposited on Si SWGs by rf magnetron sputtering method, which forms a shell/core structure. The AZO/Si shell/core SWGs reduced significantly the surface reflection compared to the AZO films/Si substrate. The coverage of AZO films on Si SWGs improved the antireflective property over a wider incident angle. The AZO/Si shell/core SWG structure with a 200 nm-thick AZO layer deposited at an rf power of 200 W exhibited a water contact angle of 123°. This structure also exhibited a low average reflectance of ~2% over a wide wavelength range of 300-2100 nm with a solar weighted reflectance of 2.8%, maintaining a reflectance of < 9.2% at wavelengths of 300-2100 nm up to the incident angle of θ(i) = 70°. The effective electrical properties of AZO films in AZO/Si shell/core SWGs were also analyzed.


Nanoscale | 2013

Biomimetic artificial Si compound eye surface structures with broadband and wide-angle antireflection properties for Si-based optoelectronic applications†

Jung Woo Leem; Young Min Song; Jae Su Yu

We report the biomimetic artificial silicon (Si) compound eye structures for broadband and wide-angle antireflection by integrating nanostructures (NSs) into periodically patterned microstructures (p-MSs) via thermal dewetting of gold and subsequent dry etching. The truncated cone microstructures with a two-dimensional hexagonal symmetry pattern were fabricated by photolithography and dry etching processes. The desirable shape and density of the nanostructures were obtained by controlled dewetting. The incorporation of p-MSs into the NS/Si surface further reduced the surface total reflectance over a wide wavelength range of 300-1030 nm at near normal incidence, indicating the average reflectance (Ravg) and solar weighted reflectance (RSWR) values of ~ 2.5% and 2%, respectively, compared to the only NSs on the flat Si surface (i.e., Ravg ~ 4.9% and RSWR ~ 4.5%). Additionally, the resulting structure improved the angle-dependent antireflection property due to its relatively omnidirectional shape, which exhibited the Ravg < 4.3% and RSWR < 3.7% in the wavelength region of 300-1100 nm even at a high incident light angle of 70° in the specular reflectance.


RSC Advances | 2014

High transparency and triboelectric charge generation properties of nano-patterned PDMS

Yeong Hwan Ko; Soo Hyun Lee; Jung Woo Leem; Jae Su Yu

Triboelectric charge generation and high transparency properties of the nano-patterned PDMS, which was stamped by silicon subwavelength grating structures as a mold, on indium tin oxide (ITO) coated polyethylene terephthalate (PET) were investigated for triboelectric nanogenerators. At visible wavelengths, the nano-patterned PDMS on ITO coated PET (i.e., ITO/PET) exhibited high transmittances of >85%, together with a theoretical analysis using the RCWA simulation. When the ITO/PET was compressed onto the nano-patterned PDMS on ITO/PET, the output voltage and current density were reliably generated with a short interval time of 0.17 s, which yielded −5.2/5.4 V and −0.57/0.74 μA cm−2, respectively, under a low external pushing force. The effect of pushing frequency on the output voltage and current density was also investigated.


Nanotechnology | 2011

Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures.

Yeong Hwan Ko; Jung Woo Leem; Jae Su Yu

We report on the periodic well-defined flower-like zinc oxide (ZnO) nanostructures (NSs) self-assembled through a simple hydrothermal method using silicon (Si) subwavelength grating (SWG) structures. The Si SWGs serve as building blocks for constructing a two-dimensional (2D) periodic architecture to integrate the one-dimensional (1D) ZnO NSs. Various controlled morphologies of ZnO NSs with high crystallinity are obtained by changing the growth conditions. For 1D ZnO NSs integrated on periodic hexagonal Si SWG structures, the reflection characteristics are investigated in comparison with the conventional ZnO nanorod (NR) arrays. For a three-dimensional (3D) flower-like ZnO NS on Si SWGs, a relatively low total reflectance of < 8% at wavelengths of 300-1050 nm is achieved compared to the ZnO NRs on Si substrate.


ACS Applied Materials & Interfaces | 2015

Strong Photocurrent Enhancements in Plasmonic Organic Photovoltaics by Biomimetic Nanoarchitectures with Efficient Light Harvesting

Jung Woo Leem; Sehwan Kim; Chihyun Park; Eunkyoung Kim; Jae Su Yu

We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.


Optics Express | 2012

Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics

Jung Woo Leem; Jae Su Yu

We reported the wafer-scale highly-transparent and superhydrophilic sapphires with antireflective subwavelength structures (SWSs) which were fabricated by dry etching using thermally dewetted gold (Au) nanomasks. Their optical transmittance properties were experimentally and theoretically investigated. The density, size, and period of the thermally dewetted Au nanopatterns can be controlled by the Au film thickness. For the sapphire with both-side SWSs at 5 nm of Au film, the average total transmittance (T(avg)) of ~96.5% at 350-800 nm was obtained, indicating a higher value than those of the flat sapphire (T(avg)~85.6%) and the sapphire with one-side SWSs (T(avg)~91%), and the less angle-dependent transmittance property was observed. The calculated transmittance results also showed a similar tendency to the measured data. The SWSs enhanced significantly the surface hydrophilicity of sapphires, exhibiting a water contact angle (θ(c)) of < 5° for Au film of 5 nm compared to θ(c)~37° of the flat sapphire.


Optics Express | 2011

Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications

Jung Woo Leem; Young Min Song; Jae Su Yu

We fabricated the germanium (Ge) subwavelength structures (SWSs) using gold (Au) metallic nanopatterns dewetted by rapid thermal annealing and inductively coupled plasma etching in SiCl(4) plasma for Ge-based photovoltaic cells. Using the optimized Au nanopatterns as an etch mask, the Ge SWSs were formed by varying the etching parameters to achieve the better antireflection properties. The reflectance of Ge SWSs depended strongly on their period, height, and shape which are closely related to the refractive index profile between air and the Ge substrate. The tapered cone Ge SWSs reduced considerably the reflectance compared to the samples with a truncated cone shape as well as the Ge substrate due to the linearly graded refractive index distribution from air to the Ge substrate. The Ge SWS with the tapered cone shape and high height exhibited a dramatic decrease in the reflectance (i.e., <10%) over a wide wavelength region of 350-1800 nm, thus leading to a low solar weighted reflectance of ~3.6%. The reflectance was also lower than ~8.8% at a wavelength of 633 nm in the incident angle range of 15-85°. The measured reflectance data of Ge SWSs showed similar trends to the calculated results in a rigorous coupled wave analysis simulation.

Collaboration


Dive into the Jung Woo Leem's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Min Song

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Tak Lee

Gwangju Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge