Jung-Yie Kao
National Chung Hsing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jung-Yie Kao.
Molecular Nutrition & Food Research | 2009
Chi-Hung Huang; Shang-Jie Tsai; Ying Jan Wang; Min-Hsiung Pan; Jung-Yie Kao; Tzong-Der Way
In the previous studies, (-)-epigallocatechin-3-gallate (EGCG) has been shown to have anticarcinogenic effects via modulation in protein expression of p53. Using p53 positive Hep G2 and p53 negative Hep 3B cells, we found that treatment of EGCG resulted in dose-dependent inhibition of cellular proliferation, which suggests that the interaction of EGCG with p53 may not fully explain its inhibitory effect on proliferation. Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents. EGCG has multiple beneficial activities similar to those associated with CR. One key enzyme thought to be activated during CR is AMP-activated kinase (AMPK), a sensor of cellular energy levels. Here, we showed that EGCG activated AMPK in both p53 positive and negative human hepatoma cells. The activation of AMPK suppressed downstream substrates, such as mammalian target of rapamycin (mTOR) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and a general decrease in mRNA translation. Moreover, EGCG activated AMPK decreases the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Interestingly, the decision between apoptosis and growth arrest following AMPK activation is greatly influenced by p53 status. In p53 positive Hep G2 cells, EGCG blocked the progression of cell cycle at G1 phase by inducing p53 expression and further up-regulating p21 expression. However, EGCG inducted apoptosis in p53 negative Hep 3B cells. Based on these results, we have demonstrated that EGCG has a potential to be a chemoprevention and anti-lipogenesis agent for human hepatoma cells.
Journal of Agricultural and Food Chemistry | 2010
Ying-Chao Lin; Chao-Ming Hung; Jia-Chun Tsai; Jang-Chang Lee; Yi-Lin Sophia Chen; Chyou-Wei Wei; Jung-Yie Kao; Tzong-Der Way
Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor. Despite recent therapeutic advances in other cancers, the treatment of GBM remains ineffective and essentially palliative. The current focus lies in the finding of components that activate the AMP-activated protein kinase (AMPK), one key enzyme thought to be activated during the caloric restriction (CR). In the present study, we found that treatment of hispidulin, a flavone isolated from Saussurea involucrate Kar. et Kir., resulted in dose-dependent inhibition of GBM cellular proliferation. Interestingly, we show that hispidulin activated AMPK in GBM cells. The activation of AMPK suppressed downstream substrates, such as the mammalian target of rapamycin (mTOR) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), and resulted in a general decrease in mRNA translation. Moreover, hispidulin-activated AMPK decreases the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Furthermore, hispidulin blocked the progression of the cell cycle at the G1 phase and induced apoptosis by inducing p53 expression and further upregulating p21 expression in GBM cells. On the basis of these results, we demonstrated that hispidulin has the potential to be a chemopreventive and therapeutic agent against human GBM.
Journal of Agricultural and Food Chemistry | 2010
Jung-Mu Yang; Chao-Ming Hung; Chen-Nan Fu; Jang-Chang Lee; Chi-Hung Huang; Muh-Hwa Yang; Chih-Li Lin; Jung-Yie Kao; Tzong-Der Way
Whether hispidulin, a flavone from traditional Chinese medicine, can modulate the anticancer effects of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), the cytokine currently in clinical trials was investigated. In the present study, we found that hispidulin potentiated the TRAIL-induced apoptosis in human ovarian cancer cells and converted TRAIL-resistant cells to TRAIL-sensitive cells. When examined for its mechanism, we found that hispidulin was highly effective in activation of caspases 8 and caspase 3 and consequent poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, we found that hispidulin downregulated the expression of Mcl-1, Bcl-2, and Bcl-xL. Whereas the downregulation of Bcl-2 and Bcl-xL was less pronounced, the downregulation of Mcl-1 was quite dramatic and was time-dependent. This sensitization is controlled through the adenosine monophosphate (AMP)-activated protein kinase (AMPK), which is the central energy-sensing system of the cell. Interestingly, we determined that AMPK is activated upon hispidulin treatment, resulting in mammalian target of rapamycin (mTOR) inhibition leading to Mcl-1 decrease. Therefore, our results show a novel mechanism for the sensitization to TRAIL-induced apoptosis linking hispidulin treatment to Mcl-1 downexpression. In addition, this study provides a rationale for the combined use of death receptor (DR) ligands with AMPK activators or mTOR inhibitors in the treatment of human cancers.
Journal of Agricultural and Food Chemistry | 2010
Tzong-Der Way; Jang-Chang Lee; Daih-Huang Kuo; Ling-Ling Fan; Chi-Hung Huang; Hui-Yi Lin; Pochuen Shieh; Po-Tsun Kuo; Chien-Fu Liao; Hanshi Liu; Jung-Yie Kao
Prostate carcinoma is the most frequently diagnosed malignancy and the second leading cause of death of men in the United States. To date, no effective therapeutic treatment allows abrogation of the progression of prostate cancer to more invasive forms. In this study, we identified Saussurea involucrata Kar. et Kir., a rare traditional Chinese medicinal herb, as a potential agent for androgen-independent prostate cancer patients and investigated its biological mechanism as an antineoplastic agent. S. involucrata caused a concentration- and time-dependent inhibition of cell proliferation in human hormone-resistant prostate cancer PC-3 cells. Moreover, in vitro studies in a panel of several types of human cancer cell lines revealed that S. involucrata inhibited cell proliferation with high potency. To evaluate the bioactive compounds, we successively extracted the S. involucrata with fractions of methanol (SI-1), ethyl acetate (SI-2), n-butanol (SI-3), and water (SI-4). Among these extracts, SI-2 contains the most effective bioactivity. SI-2 treatment resulted in significant time-dependent growth inhibition together with G1 phase cell cycle arrest and apoptosis in PC3 cells. In addition, SI-2 treatment strongly induced p21WAF1/CIP and p27KIP1 expression, independent of the p53 pathway, and downregulated expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4). SI-2 treatment increased levels of Bax, cytochrome c, activated caspase-3, and active caspase-9 and decreased Bcl-2 expression level. One of the major targets for the therapy in prostate cancer can be epidermal growth factor receptor (EGFR). SI-2 markedly reduced phosphorylation of EGFR and inhibited activation of AKT and STAT3. Moreover, p.o. administration of SI-2 induced a dose-dependent inhibition of PC-3 tumor growth in vivo. In summary, our study identifies S. involucrata as an effective inhibitor of EGFR signaling in human hormone-resistant prostate cancer PC-3 cells. We suggest that S. involucrata could be developed as an agent for the management of EGFR-positive human cancers.
Journal of Agricultural and Food Chemistry | 2010
Chieh-Wen Cheng; Pochuen Shieh; Ying-Chao Lin; Yi-Jen Chen; Yu-Huei Lin; Daih-Huang Kuo; Jah-Yao Liu; Jung-Yie Kao; Ming-Ching Kao; Tzong-Der Way
Immune escape is a characteristic of cancer progression, but its underlying molecular mechanism is still poorly understood. An immunomodulatory protein, indoleamide 2,3-dioxygenase (IDO), is induced by gamma-interferon (IFN-gamma) in several immune cells; those cells are observed in cancer cell microenvironment and can enhance immune escape. Previous studies show that IDO is expressed in the process of tumor formation and associated with cancer cell immune tolerance. By locally degrading tryptophan, IDO inhibits the proliferation of T lymphocytes and induces T cell apoptosis, leading to suppression of T cell response. In this study, (-)-epigallocatechin-3-gallate (EGCG), the major constituent of green tea, is found to significantly inhibit the expression of IDO in human oral cancer cell lines. EGCG suppresses the induction of IDO at transcriptional level. Activation of STAT1 is discovered to play an important role in regulating IDO expression by IFN-gamma. The study results demonstrate that EGCG can inhibit translocation of STAT1 into nucleus in IFN-gamma-stimulated human oral cancer cells. In addition, both tyrosine and serine phosphorylation of STAT1 are revealed to be suppressed by EGCG. Moreover, phosphorylation of PKC-delta, JAK-1, and JAK-2, which are the upstream event for the activation of STAT1, are also inhibited by EGCG in IFN-gamma-stimulated human oral cancer cells. These data show that EGCG inhibited IDO expression by blocking the IFN-gamma-induced JAK-PKC-delta-STAT1 signaling pathway. This study indicates that EGCG is a potential drug for immune and target therapy to enhance cancer therapy by increasing antitumor immunity.
Journal of Applied Microbiology | 2010
Chi-Hung Huang; Guan-Hua Lai; M.-S. Lee; Wen-Hsin Lin; Yi-Yang Lien; S.-C. Hsueh; Jung-Yie Kao; Wen-Te Chang; Tsung-Chi Lu; W.-N. Lin; H.-J. Chen
Aim:u2002 Chicken anaemia virus (CAV) causes an economically important viral disease in chickens worldwide. The main aim of this study was to establish a rapid, sensitive and specific loop‐mediated isothermal amplification (LAMP) assay for detecting CAV infection.
Molecular Nutrition & Food Research | 2008
Jang-Chang Lee; Chih-Yen Tsai; Jung-Yie Kao; Ming-Ching Kao; Shih-Chang Tsai; Chih-Shiang Chang; Li-Jiau Huang; Sheng-Chu Kuo; Jen-Kun Lin; Tzong-Der Way
Geraniin, a form of tannin separated from geranium, causes cell death through induction of apoptosis; however, cell death characteristics for geraniin have not yet been elucidated. Here, we investigated the mechanism of geraniin-induced apoptosis in human melanoma cells and demonstrated that geraniin was able to induce cell apoptosis in a concentration- and time-dependent manner. We also examined the signaling pathway related to geraniin-induced apoptosis. To clarify the relationship between focal adhesion kinase (FAK) and geraniin-induced apoptosis, we treated human melanoma cells with geraniin and found that this resulted dose- and time-dependent degradation in FAK. However, FAK cleavage was significantly inhibited when cells were pretreated with a selective inhibitor of caspase-3 (Ac-Asp-Glu-Val-Asp-CHO). Here, we demonstrated for the first time that geraniin triggered cell death by caspase-3-mediated cleavage of FAK. There were two possible mechanisms for activating caspase-3, mitochondria-mediated and receptor-mediated apoptosis. To confirm the geraniin-relevant signaling pathway, using immunoblot analysis we found that geraniin-induced apoptosis was associated with the up-regulation of Fas ligand expression, the activation of caspase-8, the cleavage of Bid, and the induction of cytochrome c release from mitochondria to the cytosol. Treatment with geraniin caused induction of caspase-3 activity in a dose- and time-dependent manner followed by proteolytic cleavage of poly-(ADP-ribose) polymerase, and DNA fragmentation factor 45. The geraniin-induced apoptosis may provide a pivotal mechanism for its cancer-chemopreventive action.
Journal of Agricultural and Food Chemistry | 2013
Chien-chang Chen; Yuhsin Chen; Yi-Ting Hsi; Chih-Sheng Chang; Li-Fen Huang; Chi-Tang Ho; Tzong-Der Way; Jung-Yie Kao
In this study, we report that the essential oil obtained from Curcuma zedoaria Roscoe, known as zedoary, possesses efficient cytotoxic effects on non-small cell lung carcinoma (NSCLC) cells and causes cell apoptosis. Zedoary essential oil increased the sub-G1 population and the level of annexin-V binding and induced cleavage and activation of caspase-3, -8, and -9 and poly(ADP ribose) polymerase. Decreases in the levels of Bcl-2 and Bcl-xL and an increase in the Bax/Bcl-2 ratio were also observed following zedoary essential oil treatment. Notably, zedoary essential oil led to the release of AIF, endonuclease G, and cytochrome c into the cytosol and increased levels of p53 in H1299 cells. Our results indicate that zedoary essential oil slightly inhibited the phosphorylation of ERK1/2 and enhanced the phosphorylation of JNK1/2 and p38. Zedoary essential oil also inhibited AKT/NF-κB signaling pathways in H1299 cells. Moreover, intraperitoneal administration of zedoary essential oil significantly suppressed the growth of H1299 cells in vivo. In addition, potential active compounds were detected using gas chromatography and mass spectrometry. 8,9-Dehydro-9-formyl-cycloisolongifolene, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-trans-benzofuran, eucalyptol, and γ-elemene were found in zedoary essential oil. In summary, our findings provide insight into the molecular mechanisms underlying zedoary essential oil-induced apoptosis in NSCLC cells that are worthy of further study.
Microbial Cell Factories | 2011
Meng-Shiou Lee; You-Cheng Hseu; Guan-Hua Lai; Wen-Te Chang; Hsi-Jien Chen; Chi-Hung Huang; Meng-Shiunn Lee; Min-Ying Wang; Jung-Yie Kao; Bang-Jau You; Wen-Hsin Lin; Yi-Yang Lien; Ming-Kuem Lin
BackgroundChicken anemia virus (CAV), the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention.ResultsSignificantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3)-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay.ConclusionsPurified recombinant VP1 protein with the genes codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.
Journal of Traditional and Complementary Medicine | 2011
Jang-Chang Lee; Jung-Yie Kao; Daih-Huang Kuo; Chien-Fu Liao; Chi-Hung Huang; Ling-Ling Fan; Tzong-Der Way
Fatigue is a noticeable and highly prevalent symptom in tense, industriously, and economically affluent modern society. Therefore, new antifatigue agents to smooth the fatigue feature are an energetic topic. The total ethanol extract (ESI) of Saussurea involucrata Kar et Kir., known as Tian-Shan snow lotus, was evaluated for antifatigue activity in ICR mice with mice forced swimming test and the determination of the contents of blood lactic acid and serum urea nitrogen. ESI (0.05, 0.15, 0.25 g/kg) was administered orally to mice for 4 weeks. The average swimming times to exhaustion of the ESI-treated ICR mice (0.15, 0.25 g/kg) were prolonged by 132% and 180% (p<0.001) with a lessening of fatigue compared with that of the control group. Analysis of biochemical parameters showed that levels of serum urea nitrogen and blood lactic acid of experimental groups were also decreased significantly (p<0.001) compared with that of the control group. The antioxidant activity of ESI was investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging assay and the hydrogen peroxide-induced luminol chemiluminescence assay and the results indicated that ESI exerts DPPH scavenging ability and reducing power. These results provide scientific evidence that S. involucrata may have been potential as an antifatigue agent.