Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jung-Youn Lee is active.

Publication


Featured researches published by Jung-Youn Lee.


Nature Reviews Molecular Cell Biology | 2004

Plasmodesmata as a supracellular control network in plants

William J. Lucas; Jung-Youn Lee

The evolution of intercellular communication had an important role in the increasing complexity of both multicellular and supracellular organisms. Plasmodesmata, the intercellular organelles of the plant kingdom, establish an effective pathway for local and long-distance signalling. In higher plants, this pathway involves the trafficking of proteins and various forms of RNA that function non-cell-autonomously to affect developmental programmes.


The Plant Cell | 2011

A Plasmodesmata-Localized Protein Mediates Crosstalk between Cell-to-Cell Communication and Innate Immunity in Arabidopsis

Jung-Youn Lee; Xu Wang; Weier Cui; Ross Sager; Shannon Modla; Kirk J. Czymmek; Boris Zybaliov; Klaas J. van Wijk; Chong Zhang; Hua Lu; Venkatachalam Lakshmanan

This study investigates how plants adopted a cellular strategy for defense against microbial pathogens by recruiting a plasmodesmata-localized protein to regulate cell-to-cell communication and augment innate immune responses. Plasmodesmata (PD) are thought to play a fundamental role in almost every aspect of plant life, including normal growth, physiology, and developmental responses. However, how specific signaling pathways integrate PD-mediated cell-to-cell communication is not well understood. Here, we present experimental evidence showing that the Arabidopsis thaliana plasmodesmata-located protein 5 (PDLP5; also known as HOPW1-1-INDUCED GENE1) mediates crosstalk between PD regulation and salicylic acid–dependent defense responses. PDLP5 was found to localize at the central region of PD channels and associate with PD pit fields, acting as an inhibitor to PD trafficking, potentially through its capacity to modulate PD callose deposition. As a regulator of PD, PDLP5 was also essential for conferring enhanced innate immunity against bacterial pathogens in a salicylic acid–dependent manner. Based on these findings, a model is proposed illustrating that the regulation of PD closure mediated by PDLP5 constitutes a crucial part of coordinated control of cell-to-cell communication and defense signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner

Young-Su Seo; Maria R. Rojas; Jung-Youn Lee; Sang Won Lee; Jong-Seong Jeon; Pamela C. Ronald; William J. Lucas; Robert L. Gilbertson

Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens.


The Plant Cell | 2013

Salicylic Acid Regulates Plasmodesmata Closure during Innate Immune Responses in Arabidopsis

Xu Wang; Ross Sager; Weier Cui; Chong Zhang; Hua Lu; Jung-Youn Lee

Coordinated cell-to-cell communication is thought to play a crucial role in deploying effective immune responses both locally and throughout the whole plant system. This work provides insight into how the defense hormone salicylic acid and its signaling pathway regulate intercellular bridges called plasmodesmata. In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell–cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell–cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell–cell coupling requires an ENHANCED DESEASE RESISTANCE1– and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1–dependent SA pathway in conjunction with the regulator of plasmodesmal gating PLASMODESMATA-LOCATED PROTEIN5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop.


Trends in Plant Science | 2011

Plasmodesmata: the battleground against intruders

Jung-Youn Lee; Hua Lu

Plasmodesmata are intercellular channels that establish a symplastic communication pathway between neighboring cells in plants. Owing to this role, opportunistic microbial pathogens have evolved to exploit plasmodesmata as gateways to spread infection from cell to cell within the plant. However, although these pathogens have acquired the capacity to breach the plasmodesmal trafficking pathway, plants are unlikely to relinquish control over a structure essential for their survival so easily. In this review, we examine evidence that suggests plasmodesmata play an active role in plant immunity against viral, fungal and bacterial pathogens. We discuss how these pathogens differ in their lifestyles and infection modes, and present the defense strategies that plants have adopted to prevent the intercellular spread of an infection.


Plant Physiology | 2008

Arabidopsis Casein Kinase 1-Like 6 Contains a Microtubule-Binding Domain and Affects the Organization of Cortical Microtubules

Gili Ben-Nissan; Weier Cui; Dong-Jin Kim; Yaodong Yang; Byung-Chun Yoo; Jung-Youn Lee

Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases that are involved in various cellular, physiological, and developmental processes in yeast and metazoans, but the biological roles of CK1 members in plants are not well understood. Here, we report that an Arabidopsis (Arabidopsis thaliana) CK1 member named casein kinase 1-like 6 (CKL6) associates with cortical microtubules in vivo and phosphorylates tubulins in vitro. The unique C-terminal domain of CKL6 was shown to contain the signal that allows localization of CKL6 to the cortical microtubules. This domain on its own was sufficient to associate with microtubules in vivo and to bind tubulins in vitro. CKL6 was able to phosphorylate soluble tubulins as well as microtubule polymers, and its endogenous activity was found to associate with a tubulin-enriched subcellular fraction. Two major in vitro phosphorylation sites were mapped to serine-413 and serine-420 of tubulin β. Ectopic expression of wild-type CKL6 or a kinase-inactive mutant form induced alterations in cortical microtubule organization and anisotropic cell expansion. Collectively, these results demonstrate that CKL6 is a protein kinase containing a novel tubulin-binding domain and plays a role in anisotropic cell growth and shape formation in Arabidopsis through the regulation of microtubule organization, possibly through the phosphorylation of tubulins.Members of casein kinase 1 (CK1) are evolutionarily conserved eukaryotic protein kinases, which play fundamental roles in various cellular, physiological and developmental processes. One of the key mechanisms by which the activity of these multifunctional CK1 members is controlled appears to be their specific spatiotemporal compartmentalization within the cell. Plant genomes encode dozens of CK1 homologs, the function of which are not yet well characterized, however, evolutionary conservation of these genes predicts their fundamental roles in plants. Characterization of Arabidopsis CK1-like 6 (CKL6) that we have recently reported sheds new light on the existence of parallel and unique aspects of the mechanism involved in specific subcellular targeting as well as cellular function of CK1 in plants. In this addendum, I will focus my discussion on the versatility of CKL6 partitioning at different subcellular compartments and propose that this capability likely reflects its multiple functions in modulating an array of cellular targets.


Journal of Experimental Botany | 2014

Plasmodesmata in integrated cell signalling: Insights from development and environmental signals and stresses

Ross Sager; Jung-Youn Lee

To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways.


Journal of Biological Chemistry | 2006

Calcium-regulated Phosphorylation of Soybean Serine Acetyltransferase in Response to Oxidative Stress

Fenglong Liu; Byung-Chun Yoo; Jung-Youn Lee; Wei Pan; Alice C. Harmon

Glycine max serine acetyltransferase 2;1 (GmSerat2;1) is a member of a family of enzymes that catalyze the first reaction in the biosynthesis of cysteine from serine. It was identified by interaction cloning as a protein that binds to calcium-dependent protein kinase. In vitro phosphorylation assays showed that GmSerat2;1, but not GmSerat2;1 mutants (S378A or S378D), were phosphorylated by soybean calcium-dependent protein kinase isoforms. Recombinant GmSerat2;1 was also phosphorylated by soybean cell extract in a Ca2+-dependent manner. Phosphorylation of recombinant GmSerat2;1 had no effect on its catalytic activity but rendered the enzyme insensitive to the feedback inhibition by cysteine. In transient expression analyses, fluorescently tagged GmSerat2;1 localized in the cytoplasm and with plastids. Phosphorylation state-specific antibodies showed that an increase in GmSerat2;1 phosphorylation occurred in vivo within 5 min of treatment of soybean cells with 0.5 mm hydrogen peroxide, whereas GmSerat2;1 protein synthesis was not significantly induced until 1 h after oxidant challenge. Internal Ca2+ was required in the induction of both GmSerat2;1 phosphorylation and synthesis. Treatment of cells with calcium antagonists showed that externally derived Ca2+ was important for retaining GmSerat2;1 at a basal level of phosphorylation but was not necessary for its hydrogen peroxide-induced synthesis. Protein phosphatase type 1, but not type 2A or alkaline phosphatase, dephosphorylated native GmSerat2;1 in vitro. These results support the hypothesis that GmSerat2;1 is regulated by calcium-dependent protein kinase phosphorylation in vivo and suggest that increased GmSerat2;1 synthesis and phosphorylation in response to active oxygen species could play a role in anti-oxidative stress response.


eLife | 2017

Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle.

Timothy J. Ross-Elliott; Kaare Hartvig Jensen; Katrine S. Haaning; Brittney M. Wager; Jan Knoblauch; Alexander H. Howell; Daniel L. Mullendore; Alexander G. Monteith; Danae Paultre; Dawei Yan; Sofia Otero; Matthieu Bourdon; Ross Sager; Jung-Youn Lee; Ykä Helariutta; Michael Knoblauch; Karl J. Oparka

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots. DOI: http://dx.doi.org/10.7554/eLife.24125.001


Plant Cell Reports | 2009

Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes

Wonkeun Park; Jixian Zhai; Jung-Youn Lee

Gene silencing is a useful technique for elucidating biological function of genes by knocking down their expression. Recently developed artificial microRNAs (amiRNAs) exploit an endogenous gene silencing mechanism that processes natural miRNA precursors to small silencing RNAs that target transcripts for degradation. Based on natural miRNA structures, amiRNAs are commonly designed such that they have a few mismatching nucleotides with respect to their target sites as well as within mature amiRNA duplexes. In this study, we performed an analysis in which the conventional and modified form of an amiRNA was compared side by side. We showed that the amiRNA containing 5′ mismatch with its amiRNA* and perfect complementarity to its target gene acted as a highly potent gene silencing agent against AP1, achieving a desired null mutation effect. In addition, a simultaneous silencing of two independent genes, AP1 and CAL1 was tested by employing a multimeric form of amiRNAs. Advantages and potential disadvantages of using amiRNAs with perfect complementarity to the target gene are discussed. The results presented here should be helpful in designing more specific and effective gene silencing agents.

Collaboration


Dive into the Jung-Youn Lee's collaboration.

Top Co-Authors

Avatar

Byung-Chun Yoo

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Weier Cui

Delaware Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Hua Lu

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Ross Sager

Delaware Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy H. Wu

University of Delaware

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Zhang

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge