Jungan Park
Sungkyunkwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jungan Park.
Plant and Cell Physiology | 2010
Ora Son; Yoon-Sun Hur; Yun-Kyung Kim; Hyun-Jung Lee; Sunghan Kim; Mi-Ran Kim; Kyoung Hee Nam; Myung-Sok Lee; Bu-Yong Kim; Jongbum Park; Jungan Park; Sukchan Lee; Atsushi Hanada; Shinjiro Yamaguchi; In-Jung Lee; Seoung-Ki Kim; Dae-Jin Yun; Eva Söderman; Choong-Ill Cheon
Arabidopsis thaliana homeobox 12 (ATHB12) is rapidly induced by ABA and water stress. A T-DNA insertion mutant of ATHB12 with a reduced level of ATHB12 expression in stems had longer inflorescence stems and reduced sensitivity to ABA during germination. A high level of transcripts of gibberellin 20-oxidase 1 (GA20ox1), a key enzyme in the synthesis of gibberellins, was detected in athb12 stems, while transgenic lines overexpressing ATHB12 (A12OX) had a reduced level of GA20ox1 in stems. Consistent with these data, ABA treatment of wild-type plants resulted in decreased GA20ox1 expression whereas ABA treatment of the athb12 mutant gave rise to slightly decreased GA20ox1 expression. Retarded stem growth in 3-week-old A12OX plants was rescued by exogenous GA(9), but not by GA(12), and less GA(9) was detected in A12OX stems than in wild-type stems. These data imply that ATHB12 decreases GA20ox1 expression in stems. On the other hand, the stems of A12OX plants grew rapidly after the first 3 weeks, so that they were almost as high as wild-type plants at about 5 weeks after germination. We also found changes in the stems of transgenic plants overexpressing ATHB12, such as alterations of expression GA20ox and GA3ox genes, and of GA(4) levels, which appear to result from feedback regulation. Repression of GA20ox1 by ATHB12 was confirmed by transfection of leaf protoplasts. ABA-treated protoplasts also showed increased ATHB12 expression and reduced GA20ox1 expression. These findings all suggest that ATHB12 negatively regulates the expression of a GA 20-oxidase gene in inflorescence stems.
Molecules and Cells | 2010
Hyejung Lee; Woo-Geun Song; Hae-Ryun Kwak; Jaedeok Kim; Jungan Park; Chung-Kyoon Auh; Dae-Hyun Kim; Kyeong-Yeoll Lee; Sukchan Lee; Hong-Soo Choi
Tomato yellow leaf curl virus (TYLCV) is a member of the genus Begomovirus of the family Geminiviridae, members of which are characterized by closed circular single-stranded DNA genomes of 2.7-2.8 kb in length, and include viruses transmitted by the Bemisia tabaci whitefly. No reports of TYLCV in Korea are available prior to 2008, after which TYLCV spread rapidly to most regions of the southern Korean peninsula (Gyeongsang-Do, Jeolla-Do and Jeju-Do). Fifty full sequences of TYLCV were analyzed in this study, and the AC1, AV1, IR, and full sequences were analyzed via the muscle program and bayesian analysis. Phylogenetic analysis demonstrated that the Korea TYLCVs were divided into two subgroups. The TYLCV Korea 1 group (Masan) originated from TYLCV Japan (Miyazaki) and the TYLCV Korea 2 group (Jeju/Jeonju) from TYLCV Japan (Tosa/Haruno). A B. tabaci phylogenetic tree was constructed with 16S rRNA and mitochondria cytochrome oxidase I (MtCOI) sequences using the muscle program and MEGA 4.0 in the neighbor-joining algorithm. The sequence data of 16S rRNA revealed that Korea B. tabaci was closely aligned to B. tabaci isolated in Iran and Nigeria. The Q type of B. tabaci, which was originally identified as a viruliferous insect in 2008, was initially isolated in Korea as a non-viruliferous insect in 2005. Therefore, we suggest that two TYLCV Japan isolates were introduced to Korea via different routes, and then transmitted by native B. tabaci.
Plant Cell Reports | 2010
Jungan Park; Hyunsik Hwang; Kenneth J. Buckley; Jongbum Park; Chung-Kyun Auh; Donggiun Kim; Sukchan Lee; Keith R. Davis
The Curtovirus C4 protein is required for symptom development during infection of Arabidopsis. Transgenic Arabidopsis plants expressing C4 from either Beet curly top virus or Beet severe curly top virus produced phenotypes that were similar to symptoms seen during infection with wild-type viruses. The pseudosymptoms caused by C4 protein alone were novel to transgenic Arabidopsis and included bumpy trichomes, severe enations, disorientation of vascular bundles and stomata, swelling, callus-like structure formation, and twisted siliques. C4 induced abnormal cell division and altered cell fate in a variety of tissues depending on the C4 expression level. C4 protein expression increased the expression levels of cell-cycle-related genes CYCs, CDKs and PCNA, and suppressed ICK1 and the retinoblastoma-related gene RBR1, resulting in activation of host cell division. These results suggest that the Curtovirus C4 proteins are involved actively in host cell-cycle regulation to recruit host factors for virus replication and symptom development.
Nutrition Research | 2012
Jin-Hee Park; Keith R. Davis; Gunsup Lee; Manyong Jung; Yuchul Jung; Jungan Park; Sang-Yeop Yi; Myung Ah Lee; Sukchan Lee; Chang-Hwan Yeom; Jin Kim
Paclitaxel is used extensively as a chemotherapeutic agent against a broad range of tumors but often leads to the early termination of treatment due to severe toxic side effects. In this study, we hypothesized that ascorbic acid could reduce the toxic side effects without interfering with the anticancer effect of paclitaxel. To demonstrate this, we examined the effect of the combinational treatment of ascorbic acid and paclitaxel using H1299 (a non-small cell lung cancer cell line) and BALB/c mice implanted with or without sarcoma 180 cancer cells. In H1299 cells, the anticancer effects of the combinational treatment with paclitaxel and ascorbic acid were up to 1.7-foldhigher than those of single-agent paclitaxel treatment. In addition, it was shown that the viability of the HEL299 normal cells was up to 1.6-fold higher with the combinational treatment than with paclitaxel treatment alone. In vivo mouse experiments also showed that mice co-treated with paclitaxel and ascorbic acid did not exhibit the typical side effects induced by paclitaxel, such as a reduction in the numbers of white blood cells and red blood cells and the level of hemoglobin (P < .05). The analysis of cancer-related gene expression by quantitative real-time polymerase chain reaction and immunohistochemistry revealed that the combinational treatment suppressed cancer cell multiplication. Taken together, these results suggest that combinational chemotherapy with ascorbic acid and paclitaxel not only does not block the anticancer effects of paclitaxel but also alleviates the cytotoxicity of paclitaxel in vivo and in vitro.
Journal of Integrative Plant Biology | 2010
Yuchul Jung; Jungan Park; Yunjung Choi; Jin-Gweon Yang; Donggiun Kim; Beom-Gi Kim; Kyunghee Roh; Dong-Hee Lee; Chung-Kyoon Auh; Sukchan Lee
Arabis stelleri var. japonica evidenced stronger osmotic stress tolerance than Arabidopsis thaliana. Using an A. thaliana microarray chip, we determined changes in the expression of approximately 2 800 genes between A. stelleri plants treated with 0.2 M mannitol versus mock-treated plants. The most significant changes in the gene expression patterns were in genes defining cellular components or in genes associated with the endomembrane system, stimulus response, stress response, chemical stimulus response, and defense response. The expression patterns of three de novo proline biosynthesis enzymes were evaluated in A. stelleri var. japonica seedlings treated with 0.2 M mannitol, 0.2 M sorbitol, and 0.2 M NaCl. The expression of Δ¹ -pyrroline-5-carboxylate synthetase was not affected by NaCl stress but was similarly induced by mannitol and sorbitol. The proline dehydrogenase gene, which is known to be repressed by dehydration stress and induced by free L-proline, was induced at an early stage by mannitol treatment, but the level of proline dehydrogenase was increased later by treatment with both mannitol and NaCl. The level of free L-proline accumulation increased progressively in response to treatments with mannitol, sorbitol, and NaCl. Mannitol induced L-proline accumulation more rapidly than NaCl or sorbitol. These findings demonstrate that the osmotic tolerance of the novel halophyte, Arabis stelleri, is associated with the accumulation of L-proline.
Archives of Virology | 2014
Eui-Joon Kil; Jungan Park; Hyejung Lee; Jaedeok Kim; Hong-Soo Choi; Kyeong-Yeoll Lee; Chang-Seok Kim; Sukchan Lee
After the first identification of tomato yellow leaf curl virus (TYLCV) in the southern part of Korea in 2008, TYLCV has rapidly spread to tomato farms in most regions of Korea. From 2008 to 2010, a survey of natural weed hosts that could be reservoirs of TYLCV was performed in major tomato production areas of Korea. About 530 samples were collected and identified as belonging to 25 species from 11 families. PCR and Southern hybridization were used to detect TYLCV in samples, and replicating forms of TYLCV DNA were detected in three species (Achyranthes bidentata, Lamium amplexicaule, and Veronica persica) by Southern hybridization. TYLCV transmission mediated by Bemisia tabaci from TYLCV-infected tomato plants to L. amplexicaule was confirmed, and TYLCV-infected L. amplexicaule showed symptoms such as yellowing, stunting, and leaf curling. TYLCV from infected L. amplexicaule was also transmitted to healthy tomato and L. amplexicaule plants by B. tabaci. The rate of infection of L. amplexicaule by TYLCV was similar to that of tomato. This report is the first to show that L. amplexicaule is a reservoir weed host for TYLCV.
Journal of Virological Methods | 2013
Jungan Park; Yuchul Jung; Eui-Joon Kil; Jaedeok Kim; Dung Thi Tran; Seung-Kook Choi; Ju-Yeon Yoon; Won Kyong Cho; Sukchan Lee
Loop-mediated isothermal amplification (LAMP) is an established nucleic acid amplification method offering rapid, sensitive, and convenient diagnosis of infectious diseases. Chrysanthemum chlorotic mottle viroid (CChMVd) causes one of the most serious viral diseases in chrysanthemum in Korea. A sensitive LAMP assay was developed for rapidly detecting CChMVd infection. The assay was based on a set of four primers matching the specific region of the CChMVd genome. The CChMVd LAMP primer sets were designed using the sequences from nonsymptomatic and symptomatic CChMVd isolates in Korea. The efficiency and specificity of this method were optimized using Bst DNA polymerase, which allowed for increased viroid detection sensitivity. The reaction was carried out at 65 °C for 90 min, and was improved by adding SYBR Green I dye to the inside of the reaction tube lid prior to amplification. The results indicate that this LAMP method will be useful for chrysanthemum viroid disease monitoring and detecting CChMVd infectious disease.
PLOS ONE | 2011
Jungan Park; Hyun-Ju Lee; Choong-Ill Cheon; Sunghan Kim; Yoon-Sun Hur; Chung-Kyun Auh; Kyung-Hwan Im; Dae-Jin Yun; Sukchan Lee; Keith R. Davis
Background Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV). Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. Methodology/Principal Findings Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were induced. Conclusions/Significance These results suggest that ATHB7 and ATHB12 may play an important role in the activation of the abnormal cell division associated with symptom development during geminivirus infection.
Korean journal of applied entomology | 2012
Youngsu Lee; Jin Young Kim; Soon-Sung Hong; Jungan Park; Hong-Hyun Park
This study investigated the occurrence of sweet potato whitefly, Bemisia tabaci affecting cucumber, eggplant and red pepper, as well as sweet potato species, and its response to insecticides in Gyeonggi province from 2010 to 2011. Sweet potato whitefly is widespread throughout the southern part of Gyeonggi province. Most regional populations of B. tabaci belong to biotype Q having been reported in the south Korea since 2005, but in Goyang mixed populations of two biotypes (B and Q) were found. Survey results of Tomato Yellow Leaf Curl Virus (TYLCV) disease that was vectored by B. tabaci indicated that this virus disease was not spread throughout the Gyeonggi province. Biotype Q of B. tabaci was found to be resistant to neonicotinoid insecticides, whereas biotype B was highly susceptible to them.
Archives of Virology | 2014
Eui-Joon Kil; Hee-Seong Byun; Sunhoo Kim; Jaedeok Kim; Jungan Park; Seungchan Cho; Dong-Cheol Yang; Kyeong-Yeoll Lee; Hong-Soo Choi; Ji-Kwang Kim; Sukchan Lee
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, has a single-stranded DNA genome. TYLCV can induce severe disease symptoms on tomato plants, but other hosts plants such as cucurbits and peppers are asymptomatic. A full-length DNA clone of a Korean TYLCV isolate was constructed by rolling-circle amplification from TYLCV-infected tomatoes in Korea. To assess relative susceptibility of sweet pepper varieties to TYLCV, 19 cultivars were inoculated with cloned TYLCV by agro-inoculation. All TYLCV-infected sweet peppers were asymptomatic, even though Southern hybridization and polymerase chain reaction analysis showed TYLCV genomic DNA accumulation in roots, stems, and newly produced shoots. Southern hybridization indicated that TYLCV replicated and moved systemically from agro-inoculated apical shoot tips to roots or newly produced shoots of sweet peppers. Whitefly-mediated inoculation experiments showed that TYLCV can be transmitted to tomatoes from TYLCV-infected sweet peppers. Taken together, these results indicate that sweet pepper can be a reservoir for TYLCV in nature.