Junge Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junge Zhang.
international conference on image processing | 2011
Shuai Zheng; Junge Zhang; Kaiqi Huang; Ran He; Tieniu Tan
Recent gait recognition systems often suffer from the challenges including viewing angle variation and large intra-class variations. In order to address these challenges, this paper presents a robust View Transformation Model for gait recognition. Based on the gait energy image, the proposed method establishes a robust view transformation model via robust principal component analysis. Partial least square is used as feature selection method. Compared with the existing methods, the proposed method finds out a shared linear correlated low rank subspace, which brings the advantages that the view transformation model is robust to viewing angle variation, clothing and carrying condition changes. Conducted on the CASIA gait dataset, experimental results show that the proposed method outperforms the other existing methods.
computer vision and pattern recognition | 2011
Junge Zhang; Kaiqi Huang; Yinan Yu; Tieniu Tan
Object localization is a challenging problem due to variations in objects structure and illumination. Although existing part based models have achieved impressive progress in the past several years, their improvement is still limited by low-level feature representation. Therefore, this paper mainly studies the description of object structure from both feature level and topology level. Following the bottom-up paradigm, we propose a boosted Local Structured HOG-LBP based object detector. Firstly, at feature level, we propose Local Structured Descriptor to capture the objects local structure, and develop the descriptors from shape and texture information, respectively. Secondly, at topology level, we present a boosted feature selection and fusion scheme for part based object detector. All experiments are conducted on the challenging PASCAL VOC2007 datasets. Experimental results show that our method achieves the state-of-the-art performance.
IEEE Transactions on Image Processing | 2015
Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Stephen J. Maybank
Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each categorys discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.
computer vision and pattern recognition | 2014
Kangwei Liu; Junge Zhang; Kaiqi Huang; Tieniu Tan
Deformable object matching, which is also called elastic matching or deformation matching, is an important and challenging problem in computer vision. Although numerous deformation models have been proposed in different matching tasks, not many of them investigate the intrinsic physics underlying deformation. Due to the lack of physical analysis, these models cannot describe the structure changes of deformable objects very well. Motivated by this, we analyze the deformation physically and propose a novel deformation decomposition model to represent various deformations. Based on the physical model, we formulate the matching problem as a two-mensional label Markov Random Field. The MRF energy function is derived from the deformation decomposition model. Furthermore, we propose a two-stage method to optimize the MRF energy function. To provide a quantitative benchmark, we build a deformation matching database with an evaluation criterion. Experimental results show that our method outperforms previous approaches especially on complex deformations.
IEEE Transactions on Image Processing | 2017
Lianrui Fu; Junge Zhang; Kaiqi Huang
Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion relational graphical model, which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model can encode the interactions between human body parts and objects, and enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation, including challenging subsets featuring significant occlusion. The experimental results show that our method is superior to the previous state-of-the-arts, and is robust to occlusion for 2D human pose estimation.Articulated human pose estimation from monocular image is a challenging problem in computer vision. Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structured models. The tree structured model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion relational graphical model, which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model can encode the interactions between human body parts and objects, and enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation, including challenging subsets featuring significant occlusion. The experimental results show that our method is superior to the previous state-of-the-arts, and is robust to occlusion for 2D human pose estimation.
international conference on pattern recognition | 2014
Weiqiang Ren; Yinan Yu; Junge Zhang; Kaiqi Huang
Learning low-dimensional feature representations is a crucial task in machine learning and computer vision. Recently the impressive breakthrough in general object recognition made by large scale convolutional networks shows that convolutional networks are able to extract discriminative hierarchical features in large scale object classification task. However, for vision tasks other than end-to-end classification, such as K Nearest Neighbor classification, the learned intermediate features are not necessary optimal for the specific problem. In this paper, we aim to exploit the power of deep convolutional networks and optimize the output feature layer with respect to the task of K Nearest Neighbor (kNN) classification. By directly optimizing the kNN classification error on training data, we in fact learn convolutional nonlinear features in a data-driven and task-driven way. Experimental results on standard image classification benchmarks show that the proposed method is able to learn better feature representations than other general end-to-end classification methods on kNN classification task.
international conference on computer vision | 2015
Lianrui Fu; Junge Zhang; Kaiqi Huang
Occlusion is a main challenge for human pose estimation, which is largely ignored in popular tree structure models. The tree structure model is simple and convenient for exact inference, but short in modeling the occlusion coherence especially in the case of self-occlusion. We propose an occlusion aware graphical model which is able to model both self-occlusion and occlusion by the other objects simultaneously. The proposed model structure can encodes the interactions between human body parts and objects, and hence enables it to learn occlusion coherence from data discriminatively. We evaluate our model on several public benchmarks for human pose estimation including challenging subsets featuring significant occlusion. The experimental results show that our method obtains comparable accuracy with the state-of-the-arts, and is robust to occlusion for 2D human pose estimation.
iberoamerican congress on pattern recognition | 2013
Tieniu Tan; Yongzhen Huang; Junge Zhang
Object classification and detection are two fundamental problems in computer vision and pattern recognition. In this paper, we discuss these two research topics, including their backgrounds, challenges, recent progress and our solutions which achieve excellent performance in PASCAL VOC competitions on object classification and detection. Moreover, potential directions are outlined for future research.
computer vision and pattern recognition | 2015
Kangwei Liu; Junge Zhang; Peipei Yang; Kaiqi Huang
Markov Random Field (MRF) is an important tool and has been widely used in many vision tasks. Thus, the optimization of MRFs is a problem of fundamental importance. Recently, Veskler and Kumar et. al propose the range move algorithms, which are one of the most successful solvers to this problem. However, two problems have limited the applicability of previous range move algorithms: 1) They are limited in the types of energies they can handle (i.e. only truncated convex functions); 2) These algorithms tend to be very slow compared to other graph-cut based algorithms (e.g. α-expansion and αβ-swap). In this paper, we propose a generalized range swap algorithm (GRSA) for efficient optimization of MRFs. To address the first problem, we extend the GRSA to arbitrary semimetric energies by restricting the chosen labels in each move so that the energy is submodular on the chosen subset. Furthermore, to feasibly choose the labels satisfying the submodular condition, we provide a sufficient condition of the submodularity. For the second problem, unlike previous range move algorithms which execute the set of all possible range moves, we dynamically obtain the iterative moves by solving a set cover problem, which greatly reduces the number of moves during the optimization. Experiments show that the GRSA offers a great speedup over previous range swap algorithms, while it obtains competitive solutions.
international conference on image processing | 2015
Lianrui Fu; Junge Zhang; Kaiqi Huang
Simple tree model prevails for 2D pose estimation for its simplicity and efficiency. However, the limited kinetic constraints often lead to double-counting and damage the accuracy of leaf parts, and this is largely ignored in previous work. In this paper, we propose a novel enhanced tree model which incorporates both local kinetic constraints and global contextual constraints among non-adjacent parts. By introducing virtual parts, we are able to model richer constraints within a tree structure and dynamic programming can be utilized for efficient inference. Experiments on public benchmarks show that our method is more effective in tackling double counting problem and can improve the localization accuracy, especially for the challenging lower limbs.