Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junghyo Jo is active.

Publication


Featured researches published by Junghyo Jo.


PLOS Computational Biology | 2009

Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth

Junghyo Jo; Oksana Gavrilova; Stephanie Pack; William Jou; Shawn Mullen; Anne E. Sumner; Samuel W. Cushman; Vipul Periwal

Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.


Islets | 2009

Islet architecture: A comparative study

Abraham Kim; Kevin Miller; Junghyo Jo; German Kilimnik; Pawel Wojcik; Manami Hara

Emerging reports on the organization of the different hormone-secreting cell types (alpha, glucagon; beta, insulin; and delta, somatostatin) in human islets have emphasized the distinct differences between human and mouse islets, raising questions about the relevance of studies of mouse islets to human islet physiology. Here, we examine the differences and similarities between the architecture of human and mouse islets. We studied islets from various mouse models including ob/ob and db/db and pregnant mice. We also examined the islets of monkeys, pigs, rabbits and birds for further comparisons. Despite differences in overall body and pancreas size as well as total beta-cell mass among these species, the distribution of their islet sizes closely overlaps, except in the bird pancreas in which the delta-cell population predominates (both in singlets and clusters) along with a small number of islets. Markedly large islets (>10,000 µm2) were observed in human and monkey islets as well as in islets from ob/ob and pregnant mice. The fraction of α-, β-, and δ-cells within an islet varied between islets in all the species examined. Furthermore, there was variability in the distribution of alpha- and delta-cells with the same species. In summary, human and mouse islets share common architectural features that may reflect demand for insulin. Comparative studies of islet architecture may lead to a better understanding of islet development and function.


PLOS ONE | 2011

Altered Islet Composition and Disproportionate Loss of Large Islets in Patients with Type 2 Diabetes

German Kilimnik; Billy Zhao; Junghyo Jo; Vipul Periwal; Piotr Witkowski; Ryosuke Misawa; Manami Hara

Human islets exhibit distinct islet architecture with intermingled alpha- and beta-cells particularly in large islets. In this study, we quantitatively examined pathological changes of the pancreas in patients with type 2 diabetes (T2D). Specifically, we tested a hypothesis that changes in endocrine cell mass and composition are islet-size dependent. A large-scale analysis of cadaveric pancreatic sections from T2D patients (n = 12) and non-diabetic subjects (n = 14) was carried out combined with semi-automated analysis to quantify changes in islet architecture. The method provided the representative islet distribution in the whole pancreas section that allowed us to examine details of endocrine cell composition in individual islets. We observed a preferential loss of large islets (>60 µm in diameter) in T2D patients compared to non-diabetic subjects. Analysis of islet cell composition revealed that the beta-cell fraction in large islets was decreased in T2D patients. This change was accompanied by a reciprocal increase in alpha-cell fraction, however total alpha-cell area was decreased along with beta-cells in T2D. Delta-cell fraction and area remained unchanged. The computer-assisted quantification of morphological changes in islet structure minimizes sampling bias. Significant beta-cell loss was observed in large islets in T2D, in which alpha-cell ratio reciprocally increased. However, there was no alpha-cell expansion and the total alpha-cell area was also decreased. Changes in islet architecture were marked in large islets. Our method is widely applicable to various specimens using standard immunohistochemical analysis that may be particularly useful to study large animals including humans where large organ size precludes manual quantitation of organ morphology.


PLOS ONE | 2013

Regional Differences in Islet Distribution in the Human Pancreas - Preferential Beta-Cell Loss in the Head Region in Patients with Type 2 Diabetes

Xiaojun Wang; Ryosuke Misawa; Mark C. Zielinski; Peter Cowen; Junghyo Jo; Vipul Periwal; Camillo Ricordi; Aisha Khan; Joel Szust; Junhui Shen; J. Michael Millis; Piotr Witkowski; Manami Hara

While regional heterogeneity in islet distribution has been well studied in rodents, less is known about human pancreatic histology. To fill gaps in our understanding, regional differences in the adult human pancreas were quantitatively analyzed including the pathogenesis of type 2 diabetes (T2D). Cadaveric pancreas specimens were collected from the head, body and tail regions of each donor, including subjects with no history of diabetes or pancreatic diseases (n = 23) as well as patients with T2D (n = 12). The study further included individuals from whom islets were isolated (n = 7) to study islet yield and function in a clinical setting of islet transplantation. The whole pancreatic sections were examined using an innovative large-scale image capture and unbiased detailed quantitative analyses of the characteristics of islets from each individual (architecture, size, shape and distribution). Islet distribution/density is similar between the head and body regions, but is >2-fold higher in the tail region. In contrast to rodents, islet cellular composition and architecture were similar throughout the pancreas and there was no difference in glucose-stimulated insulin secretion in islets isolated from different regions of the pancreas. Further studies revealed preferential loss of large islets in the head region in patients with T2D. The present study has demonstrated distinct characteristics of the human pancreas, which should provide a baseline for the future studies integrating existing research in the field and helping to advance bi-directional research between humans and preclinical models.


PLOS ONE | 2009

Islet Formation during the Neonatal Development in Mice

Kevin Miller; Abraham Kim; German Kilimnik; Junghyo Jo; Uchenna Moka; Vipul Periwal; Manami Hara

The islet of Langerhans is a unique micro-organ within the exocrine pancreas, which is composed of insulin-secreting beta-cells, glucagon-secreting alpha-cells, somatostatin-secreting delta-cells, pancreatic polypeptide-secreting PP cells and ghrelin-secreting epsilon-cells. Islets also contain non-endocrine cell types such as endothelial cells. However, the mechanism(s) of islet formation is poorly understood due to technical difficulties in capturing this dynamic event in situ. We have developed a method to monitor beta-cell proliferation and islet formation in the intact pancreas using transgenic mice in which the beta-cells are specifically tagged with a fluorescent protein. Endocrine cells proliferate contiguously, forming branched cord-like structures in both embryos and neonates. Our study has revealed long stretches of interconnected islets located along large blood vessels in the neonatal pancreas. Alpha-cells span the elongated islet-like structures, which we hypothesize represent sites of fission and facilitate the eventual formation of discrete islets. We propose that islet formation occurs by a process of fission following contiguous endocrine cell proliferation, rather than by local aggregation or fusion of isolated beta-cells and islets. Mathematical modeling of the fission process in the neonatal islet formation is also presented.


Islets | 2012

Quantification of islet size and architecture

German Kilimnik; Junghyo Jo; Vipul Periwal; Mark C. Zielinski; Manami Hara

Human islets exhibit distinct islet architecture particularly in large islets that comprise of a relatively abundant fraction of α-cells intermingled with β-cells, whereas mouse islets show largely similar architecture of a β-cell core with α-cells in the periphery. In humans, islet architecture is islet-size dependent. Changes in endocrine cell mass preferentially occurred in large islets as demonstrated in our recent study on pathological changes of the pancreas in patients with type 2 diabetes.1 The size dependency of human islets in morphological changes prompted us to develop a method to capture the representative islet distribution in the whole pancreas section combined with a semi-automated analysis to quantify changes in islet architecture. The computer-assisted quantification allows detailed examination of endocrine cell composition in individual islets and minimizes sampling bias. The standard immunohistochemistry based method is widely applicable to various specimens, which is particularly useful for large animal studies but is also applied to a large-scale analysis of the whole organ section from mice. In this article, we describe the method of image capture, parameters measured, data analysis and interpretation of the data.


American Journal of Physiology-endocrinology and Metabolism | 2009

Quantification of pancreatic islet distribution in situ in mice

German Kilimnik; Abraham Kim; Junghyo Jo; Kevin Miller; Manami Hara

Tracing changes of specific cell populations in health and disease is an important goal of biomedical research. Precisely monitoring pancreatic beta-cell proliferation and islet growth is a challenging area of research. We have developed a method to capture the distribution of beta-cells in the intact pancreas of transgenic mice with fluorescence-tagged beta-cells with a macro written for ImageJ (rsb.info.nih.gov/ij/). Total beta-cell area and islet number and size distribution are quantified with reference to specific parameters and location for each islet and for small clusters of beta-cells. The entire distribution of islets can now be plotted in three dimensions, and the information from the distribution on the size and shape of each islet allows a quantitative and a qualitative comparison of changes in overall beta-cell area at a glance.


Biophysical Journal | 2005

How Noise and Coupling Induce Bursting Action Potentials in Pancreatic β-Cells

Junghyo Jo; Hyuk Kang; M. Y. Choi; Duk Su Koh

Unlike isolated beta-cells, which usually produce continuous spikes or fast and irregular bursts, electrically coupled beta-cells are apt to exhibit robust bursting action potentials. We consider the noise induced by thermal fluctuations as well as that by channel-gating stochasticity and examine its effects on the action potential behavior of the beta-cell model. It is observed numerically that such noise in general helps single cells to produce a variety of electrical activities. In addition, we also probe coupling via gap junctions between neighboring cells, with heterogeneity induced by noise, to find that it enhances regular bursts.


Biophysical Journal | 2010

Hypertrophy-Driven Adipocyte Death Overwhelms Recruitment under Prolonged Weight Gain

Junghyo Jo; Juen Guo; Teresa Liu; Shawn Mullen; Kevin D. Hall; Samuel W. Cushman; Vipul Periwal

Fat pads dynamically regulate energy storage capacity under energy excess and deficit. This remodeling process is not completely understood, with controversies regarding differences between fat depots and plasticity of adipose cell number. We examined changes of mouse adipose cell-size distributions in epididymal, inguinal, retroperitoneal, and mesenteric fat under both weight gain and loss. With mathematical modeling, we specifically analyzed the recruitment, growth/shrinkage, and loss of adipose cells, including the size dependence of these processes. We found a qualitatively universal adipose tissue remodeling process in all four fat depots: 1), There is continuous recruitment of new cells under weight gain; 2), the growth and shrinkage of larger cells (diameter >50 μm) is proportional to cell surface area; and 3), cell loss occurs under prolonged weight gain, with larger cells more susceptible. The mathematical model gives a predictive integrative picture of adipose tissue remodeling in obesity.


Biophysical Journal | 2011

Formation of Pancreatic Islets Involves Coordinated Expansion of Small Islets and Fission of Large Interconnected Islet-like Structures

Junghyo Jo; German Kilimnik; Abraham Kim; Charles Guo; Vipul Periwal; Manami Hara

The islets of Langerhans, micro-organs for maintaining glucose homeostasis, range in size from small clusters of <10 cells to large islets consisting of several thousand endocrine cells. Islet size distributions among various species are similar and independent of body size, suggesting an intrinsic limit to islet size. Little is known about the mechanisms regulating islet size. We have carried out a comprehensive analysis of changes of islet size distribution in the intact mouse pancreas from birth to eight months, including mathematical modeling to quantify this dynamic biological process. Islet growth was size-dependent during development, with preferential expansion of smaller islets and fission of large interconnected islet-like structures occurring most actively at approximately three weeks of age at the time of weaning. The process of islet formation was complete by four weeks with little or no new islet formation thereafter, and all the β-cells had low proliferation potential in the adult, regardless of islet size. Similarly, in insulinoma-bearing mice, the early postnatal developmental process including fission followed the same time course with no new islet formation in adults. However, tumor progression led to uncontrolled islet growth with accelerated expansion of larger islets. Thus, islet formation and growth is a tightly regulated process involving preferential expansion of small islets and fission of large interconnected islet-like structures.

Collaboration


Dive into the Junghyo Jo's collaboration.

Top Co-Authors

Avatar

Vipul Periwal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Y. Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Kang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Duk Su Koh

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunsuk Hong

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge