Jungkyun Shin
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jungkyun Shin.
Computers & Geosciences | 2014
Jungkyun Shin; Wansoo Ha; Hyunggu Jun; Dong-Joo Min; Changsoo Shin
Abstract The Laplace-domain full waveform inversion is an efficient long-wavelength velocity estimation method for seismic datasets lacking low-frequency components. However, to invert a 3D velocity model, a large cluster of CPU cores have commonly been required to overcome the extremely long computing time caused by a large impedance matrix and a number of source positions. In this study, a workstation with a single GPU card (NVIDIA GTX 580) is successfully used for the 3D Laplace-domain full waveform inversion rather than a large cluster of CPU cores. To exploit a GPU for our inversion algorithm, the routine for the iterative matrix solver is ported to the CUDA programming language for forward and backward modeling parts with minimized modification of the remaining parts, which were originally written in Fortran 90. Using a uniformly structured grid set, nonzero values in the sparse impedance matrix can be arranged according to certain rules, which efficiently parallelize the preconditioned conjugate gradient method for a number of threads contained in the GPU card. We perform a numerical experiment to verify the accuracy of a floating point operation performed by a GPU to calculate the Laplace-domain wavefield. We also measure the efficiencies of the original CPU and modified GPU programs using a cluster of CPU cores and a workstation with a GPU card, respectively. Through the analysis, the parallelized inversion code for a GPU achieves the speedup of 14.7 – 24.6 x compared to a CPU-based serial code depending on the degrees of freedom of the impedance matrix. Finally, the practicality of the proposed algorithm is examined by inverting a 3D long-wavelength velocity model using wide azimuth real datasets in 3.7 days.
Geophysical Prospecting | 2017
Jungkyun Shin; Hyunggu Jun; Dong-Joo Min; Changsoo Shin
ABSTRACT To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems.
Exploration Geophysics | 2017
Hyunggu Jun; Jungkyun Shin; Changsoo Shin
Full waveform inversion (FWI) is a method that is used to reconstruct velocity models of the subsurface. However, this approach suffers from the local minimum problem during optimisation procedures. The local minimum problem is caused by several issues (e.g. lack of low-frequency information and an inaccurate starting model), which can create obstacles to the practical application of FWI with real field data. We applied a 4-phase FWI in a sequential manner to obtain the correct velocity model when a dataset lacks low-frequency information and the starting velocity model is inaccurate. The first phase is Laplace-domain FWI, which inverts the large-scale velocity model. The second phase is Laplace-Fourier-domain FWI, which generates a large- to mid-scale velocity model. The third phase is a frequency-domain FWI that uses a logarithmic wavefield; the inverted velocity becomes more accurate during this step. The fourth phase is a conventional frequency-domain FWI, which generates an improved velocity model with correct values. The detailed methods of applying each FWI phase are explained, and the proposed method is validated via numerical tests with a SEG/EAGE salt synthetic dataset and Gulf of Mexico field dataset. The numerical tests show that the 4-phase FWI inverts the velocity correctly despite the lack of low-frequency information and an inaccurate starting velocity model both in synthetic data and field data. The low-frequency information and correct starting velocity are important for full waveform inversion (FWI). However, obtaining low-frequency information and accurate starting velocity from the field seismic exploration is difficult. This paper suggests a 4-phase FWI to invert the correct velocity model when a dataset lacks low-frequency information and accurate starting velocity.
Geophysics | 2014
Hyunggu Jun; Youngseo Kim; Jungkyun Shin; Changsoo Shin; Dong-Joo Min
Journal of Applied Geophysics | 2013
Jungkyun Shin; Youngseo Kim; Changsoo Shin; Henri Calandra
Seg Technical Program Expanded Abstracts | 2012
Wookeen Chung; Jungkyun Shin; Changsoo Shin; Sung-Ryul Shin
Journal of Applied Geophysics | 2016
Jungkyun Shin; Changsoo Shin; Henri Calandra
Journal of Applied Geophysics | 2015
Dong-Joo Min; Jungkyun Shin; Changsoo Shin
Seg Technical Program Expanded Abstracts | 2013
Jungkyun Shin; Hyunggu Jun; Youngseo Kim; Changsoo Shin
Seg Technical Program Expanded Abstracts | 2013
Jungkyun Shin; Jae-Joon Lee; Youngseo Kim; Changsoo Shin