Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jungsook Cho is active.

Publication


Featured researches published by Jungsook Cho.


Brain Research | 2003

Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten.

Hyang Dok-Go; Kwang Heun Lee; Hyoung Ja Kim; Eun Ha Lee; Jiyong Lee; Yun Seon Song; Yong Ha Lee; Changbae Jin; Yong Sup Lee; Jungsook Cho

The flavonoids quercetin, (+)-dihydroquercetin, and quercetin 3-methyl ether were isolated from the ethyl acetate fractions of the fruits and stems of Opuntia ficus-indica var. saboten. In the present study, we evaluated their protective effects against oxidative neuronal injuries induced in primary cultured rat cortical cells and their antioxidant activities by using three different cell-free bioassays. Quercetin was found to inhibit H(2)O(2)- or xanthine (X)/xanthine oxidase (XO)-induced oxidative neuronal cell injury, with an estimated IC(50) of 4-5 micro g/ml. However, it was no more protective at concentrations of 30 micro g/ml and above. (+)-Dihydroquercetin concentration-dependently inhibited oxidative neuronal injuries, but it was less potent than quercetin. On the other hand, quercetin 3-methyl ether potently and dramatically inhibited H(2)O(2)- and X/XO-induced neuronal injuries, with IC(50) values of 0.6 and 0.7 micro g/ml, respectively. All three principles markedly inhibited lipid peroxidation and scavenged 1,1-diphenyl-2-picrylhydrazyl free radicals. In addition, quercetin and quercetin 3-methyl ether were shown to inhibit XO activity in vitro, with respective IC(50) values of 10.67 and 42.01 micro g/ml. These results indicate that quercetin, (+)-dihydroquercetin, and quercetin 3-methyl ether are the active antioxidant principles in the fruits and stems of Opuntia ficus-indica var. saboten exhibiting neuroprotective actions against the oxidative injuries induced in cortical cell cultures. Furthermore, quercetin 3-methyl ether appears to be the most potent neuroprotectant of the three flavonoids isolated from this plant.


Life Sciences | 2002

Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus

Jungsook Cho; Young Ho Kim; Jae-Yang Kong; Chae Ha Yang; Chang Gook Park

Previous reports have shown that the methanol extract and the essential oil from Acori graminei Rhizoma (AGR) inhibited excitotoxic neuronal cell death in primary cultured rat cortical cells. In the present study, an active principle was isolated from the methanol extract by biological activity-guided fractionations and identified as asarone. We evaluated neuroprotective actions and action mechanisms of the isolated asarone as well as the alpha- and the beta-asarone obtained commercially. The isolated asarone inhibited the excitotoxicity induced by the exposure of cortical cultures for 15 min to 300 microM NMDA in a concentration-dependent manner, with the IC50 of 56.1 microg/ml. The commercially obtained alpha- and beta-asarone exhibited more potent inhibitions of the NMDA-induced excitotoxicity than the isolated asarone. Their respective IC50 values were 18.2 and 26.5 microg/ml. The excitotoxicity induced by glutamate (Glu) was also inhibited, but with much less potency than the toxicity induced by NMDA. The IC50 values for the alpha-, beta-, and the isolated asarone were 89.7, 121.7, and 279.5 microg/ml, respectively. Based on the receptor-ligand binding studies using a use-dependent NMDA receptor-channel blocker [3H]MK-801, asarone inhibited the specific bindings in a concentration-dependent fashion. These results indicate that asarone, the major essential oil component in AGR, exhibits neuroprotective action against the NMDA- or Glu-induced excitotoxicity through the blockade of NMDA receptor function. The alpha-asarone was found to exhibit more potent inhibition of [3H]MK-801 bindings, which is consistent with its more potent neuroprotective action than the beta- or the isolated asarone.


Archives of Pharmacal Research | 2003

Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract

Jungsook Cho; Jong Seong Kang; Pham Hoai Long; Jhang Jing; Yiho Back; Kyeong-Soo Chung

The effects of purple sweet potato anthocyanin (SPA) and Cordyceps mushroom extract (CME) on lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and cognitive deficits were examined. Both SPA and CME exhibited DPPH radical scavenging activities with similar potency. In contrast, only SPA was shown to effectively inhibit lipid peroxidation initiated by Fe2+ and ascorbic acid in rat brain homogenates. Furthermore, SPA markedly enhanced cognitive performance, assessed by passive avoidance test in ethanol-treated mice. Combined treatments with SPA and CME did not significantly influence the effects of SPA alone. These results demonstrate that anthocyanin prepared from purple sweet potato exhibits memory enhancing effects, which may be associated with its antioxidant properties.


Archives of Pharmacal Research | 2006

Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin

Jungsook Cho

The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by Fe2+ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by H2O2 or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the Aβ(25–35)-induced neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.


Archives of Pharmacal Research | 2003

Constituents of the stems and fruits of Opuntia ficus-indica var. saboten

Eun Ha Lee; Hyoung Ja Kim; Yun Seon Song; Changbae Jin; Kyung-Tae Lee; Jungsook Cho; Yong Sup Lee

From the stems and fruits ofOpuntia ficus-indica var.saboten, eight flavonoids, kaempferol (1), quercetin (2), kaempferol 3-methyl ether (3), quercetin 3-methyl ether (4), narcissin (5), (+)-dihydrokaempferol (aromadendrin,6), (+)-dihydroquercetin (taxifolin,7), eriodictyol (8), and two terpenoids, (6S,9S)-3-oxo-α-ionol-|β-D-glucopyranoside (9) and corchoionoside C (10) were isolated and identified by means of chemical and spectroscopic. Among these isolates, compounds3–5 and8–10 were reported for the first time from the stems and fruits of O.ficusindica var.saboten.


Archives of Pharmacal Research | 2005

Memory enhancing and neuroprotective effects of selected ginsenosides

Hai Ying Bao; Jing Zhang; Soo Jeong Yeo; Chang-Seon Myung; Hyang Mi Kim; Jong Moon Kim; Jeong Hill Park; Jungsook Cho; Jong Seong Kang

The effects of ginsenosides Rg3(R), Rg3(S) and Rg5/Rk1 (a mixture of Rg5 and Rk1, 1:1, w/w), which are components isolated from processedPanax ginseng C.A. Meyer (Araliaceae), on memory dysfunction were examined in mice using a passive avoidance test. The ginsenosides Rg3(R), Rg3(S) or Rg5/Rk1, when orally administered for 4 days, significantly ameliorated the memory impairment induced by the single oral administration of ethanol. The memory impairment induced by the intraperitoneal injection of scopolamine was also significantly recovered by ginsenosides Rg3(S) and Rg5/Rk1. Among the three ginsenosides tested in this study, Rg5/Rk1 enhanced the memory function of mice most effectively in both the ethanol-and scopolamine-induced amnesia models. Moreover, the latency period of the Rg5/Rk1-treated mice was 1.2 times longer than that of the control (no amnesia) group in both models, implying that Rg5/Rk1 may also exert beneficial effects in the normal brain. We also evaluated the effects of these ginsenosides on the excitotoxic and oxidative stress-induced neuronal cell damage in primary cultured rat cortical cells. The excitotoxicity induced by glutamate orN-methyl-D-aspartate (NMDA) was dramatically inhibited by the three ginsenosides. Rg3(S) and Rg5/Rk1 exhibited a more potent inhibition of excitotoxicity than did Rg3(R). In contrast, these ginsenosides were all ineffective against the H2O2-or xanthine/xanthine oxidase-induced oxidative neuronal damage. Taken together, these results indicate that ginsenosides Rg3(S) and Rg5/Rk1 significantly reversed the memory dysfunction induced by ethanol or scopolamine, and their neuroprotective actions against excitotoxicity may be attributed to their memory enhancing effects.


Life Sciences | 2001

NMDA recepter-mediated neuroprotection by essential oils from the rhizomes of Acorus gramineus

Jungsook Cho; Jae-Yang Kong; Dae-Young Jeong; Kap Duk Lee; Dong-Ung Lee; Byung-Soo Kang

Acori graminei Rhizoma (AGR) is shown to exhibit a number of pharmacological actions including sedation and anticonvulsive action. To further characterize its actions in the CNS, the present study evaluated the effects of essential oils (EO) from AGR on the excitotoxic neuronal cell death induced in primary rat cortical cell cultures. EO inhibited the glutamate-induced excitotoxicity in a concentration-dependent manner, with the IC50 of 0.241 mg/ml. EO exerted more potent neuroprotection against the toxicity induced by NMDA (IC50 = 0.139 mg/ml). In contrast, the AMPA-induced toxicity was not inhibited by EO. Receptor-ligand binding studies were performed to investigate the neuroprotective action mechanism. EO dramatically inhibited the specific bindings of a use-dependent NMDA receptorion channel blocker [3H]MK-801, indicating an NMDA receptor antagonist-like action. However, the bindings of [3H]MDL 105,519, a ligand selective for the glycine binding site of NMDA receptor, were not considerably inhibited. These results demonstrated that EO extracted from AGR exhibited neuroprotective effects on cultured cortical neurons through the blockade of NMDA receptor activity, and that the glycine binding site appeared not to be the major site of action.


Archives of Pharmacal Research | 2013

Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases

Shambhunath Bose; Jungsook Cho

Chemokines are members of the chemoattractant cytokine family. They play key roles in the trafficking of leukocytes and in the induction of chemotaxis through the activation of G protein-coupled receptor. Considerable interest has been paid to these molecules to elucidate their roles in the unique inflammatory responses elicited in the central nervous system (CNS). Chemokine CCL2 (also known as monocyte chemoattractant protein-1, MCP-1) is one of the vital chemokines that control the migration and infiltration of monocytes/macrophages. CCL2 and its receptor CCR2 have been shown to be induced and involved in various neurodegenerative disorders including Alzheimer’s disease, multiple sclerosis, and ischemic brain injury. The present review will focus on the biological and pathophysiological aspects of CCL2 and CCR2 in the CNS and the possible therapeutic approaches for targeting these two proteins to combat neurodegenerative diseases.


Journal of Ethnopharmacology | 2000

Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizoma in cultured rat cortical neurons

Jungsook Cho; Nam Eok Joo; Jae-Yang Kong; Dae-Young Jeong; Kap Duk Lee; Byung-Soo Kang

Acori graminei rhizoma (AGR) are reported to exhibit a number of pharmacological actions in the central nervous system. The effects of the methanol extract of AGR on excitotoxic neuronal death were evaluated in the present study using cultured rat cortical neurons. Based on the phase-contrast microscopic examinations of cultures and lactate dehydrogenase activities measured in the culture media, the glutamate-induced excitotoxicity was significantly inhibited by the extract. The inhibitory action of the extract was more potent and selective for the N-methyl-D-aspartate (NMDA) receptor-mediated toxicity. The AGR extract competed with [3H]MDL 105,519 for the specific binding to the glycine site of the NMDA receptor with the IC(50) value of 164.7 microg/ml. Modulation of the NMDA receptor activity by the extract was determined using [3H]MK-801 binding studies. The reduction of the binding in the presence of the extract indicated the receptor inactivation by AGR. These results demonstrated that the methanol extract of AGR exhibited protective action against excitotoxic neuronal death, and that the neuroprotective action was primarily due to the blockade of NMDA receptor function by the interaction with the glycine binding site of the receptor.


Archives of Pharmacal Research | 2004

Gossypin protects primary cultured rat cortical cells from oxidative stress- and β-amyloid-lnduced toxicity

Injae Yoon; Kwang Heun Lee; Jungsook Cho

The present study investigated the effects of gossypin, 3,3′,4′,5,7,8-hexahydroxyflavone 8-glu-coside, on the toxicity induced by oxidative stress or β-amyloid (Aβ) in primary cultured rat cortical cells. The antioxidant properties of gossypin were also evaluated by cell-free assays. Gossypin was found to inhibit the oxidative neuronal damage induced by xanthine/xanthine oxidase or by a glutathione depleting agent, D,L-buthionine (S,R)-sulfoximine. In addition, gossypin significantly attenuated the neurotoxicity induced by Aβ(25–35). Furthermore, gossypin dramatically inhibited lipid peroxidation initiated by Fe2+ and ascorbic acid in rat brain homogenates. It also exhibited potent radical scavenging activity generated from 1,1-diphenyl-2-picrylhydrazyl. These results indicate that gossypin exerts neuroprotective effects in the cultured cortical cells by inhibiting oxidative stress- and Aβ-induced toxicity, and that the antioxidant properties of gossypin may contribute to its neuroprotective actions.

Collaboration


Dive into the Jungsook Cho's collaboration.

Top Co-Authors

Avatar

Heesoon Lee

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jae-Kyung Jung

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Changbae Jin

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae-Hwan Kwak

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngsoo Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang-Bae Han

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge