Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junhua Wu is active.

Publication


Featured researches published by Junhua Wu.


ACS Applied Materials & Interfaces | 2016

Electroresponsive Supramolecular Graphene Oxide Hydrogels for Active Bacteria Adsorption and Removal

Bin Xue; Meng Qin; Junhua Wu; Dongjun Luo; Qing Jiang; Ying Li; Yi Cao; Wei Wang

Bacteria contamination in drinking water and medical products can cause severe health problems. However, currently available sterilization methods, mainly based on the size-exclusion mechanism, are typically slow and require the entire contaminated water to pass through the filter. Here, we present an electroresponsive hydrogel based approach for bacteria adsorption and removal. We successfully engineered a series of graphene oxide hydrogels using redox-active ruthenium complexes as noncovalent cross-linkers. The resulting hydrogels can reversibly switch their physical properties in response to the applied electric field along with the changes of oxidation states of the ruthenium ions. The hydrogels display strong bacteria adsorbing capability. A hydrogel of 1 cm(3) can adsorb a maximum of 1 × 10(8) E. coli. The adsorbed bacteria in the hydrogels can then be inactivated by a high voltage electric pulse and removed from the hydrogels subsequently. Owing to the high bacteria removal rate, reusability, and low production cost, these hydrogels represent promising candidates for the emergent sterilization of medical products or large-scale purification of drinking water.


Oncotarget | 2017

Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis

Zhen Qu; Junhua Wu; Junyi Wu; Anlai Ji; Guang-Hui Qiang; Yong Jiang; Chunping Jiang; Yitao Ding

Recent studies have shown that circulating microRNAs are potential biomarkers for various types of malignancies. The aim of this study was to investigate the feasibility of using serum exosomal microRNAs (miRNAs) as novel serological biomarkers for hepatocellular carcinoma (HCC) diagnosis and prognosis. Exosomes are small membranous vesicles (30–100 nm). Exosomal miR-665 levels in HCC patients were significantly higher than those in healthy subjects (P < 0.05), and exosomal miR-665 levels were significantly upregulated in tumours larger in size (> 5 cm), in tumours with local invasion and in those at an advanced clinical stage (stage III/IV) of HCC (P = 0.0042, 0.0197, and 0.0276, respectively). The survival time of the exosomal miR-665 high-expression group (n = 17) was significantly shorter than that of the low-expression group (n = 13) (P = 0.036). In addition, we found that HCC cell-derived exosomes promoted hepatoma cell proliferation and upregulated the expression level of proteins in the MAPK/ERK pathway in vitro and in vivo. This study suggests that serum exosomal miR-665 may be a novel minimally invasive biomarker for HCC diagnosis and prognosis.


Scientific Reports | 2017

Oncolytic measles virus enhances antitumour responses of adoptive CD8 + NKG2D + cells in hepatocellular carcinoma treatment

Aiping Chen; Yonghui Zhang; Gang Meng; Dengxu Jiang; Hailin Zhang; Meihong Zheng; Mao Xia; Aiqin Jiang; Junhua Wu; Christian Beltinger; Jiwu Wei

There is an urgent need for novel effective treatment for hepatocellular carcinoma (HCC). Oncolytic viruses (OVs) not only directly lyse malignant cells, but also induce potent antitumour immune responses. The potency and precise mechanisms of antitumour immune activation by attenuated measles virus remain unclear. In this study, we investigated the potency of the measles virus vaccine strain Edmonston (MV-Edm) in improving adoptive CD8+NKG2D+ cells for HCC treatment. We show that MV-Edm-infected HCC enhanced the antitumour activity of CD8+NKG2D+ cells, mediated by at least three distinct mechanisms. First, MV-Edm infection compelled HCC cells to express the specific NKG2D ligands MICA/B, which may contribute to the activation of CD8+NKG2D+ cells. Second, MV-Edm-infected HCC cells stimulated CD8+NKG2D+ cells to express high level of FasL resulting in enhanced induction of apoptosis. Third, intratumoural administration of MV-Edm enhanced infiltration of intravenously injected CD8+NKG2D+ cells. Moreover, we found that MV-Edm and adoptive CD8+NKG2D+ cells, either administered alone or combined, upregulated the immune suppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in HCC. Elimination of IDO1 by fludarabine enhanced antitumour responses. Taken together, our data provide a novel and clinically relevant strategy for treatment of HCC.


Nature Communications | 2018

Rationally designed synthetic protein hydrogels with predictable mechanical properties

Junhua Wu; Pengfei Li; Chenling Dong; Heting Jiang; Bin Xue; Xiang Gao; Meng Qin; Wei Wang; Bin Chen; Yi Cao

Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.Mechanical properties of protein hydrogels are critical to mimic natural tissue but correlating bulk properties on the molecular level remains challenging. Here the authors show that the hierarchy of crosslinkers and load-bearing modules on a molecular level defines the mechanical properties of the hydrogel.


PLOS ONE | 2016

The Glutaminase-1 Inhibitor 968 Enhances Dihydroartemisinin-Mediated Antitumor Efficacy in Hepatocellular Carcinoma Cells.

Diancheng Wang; Gang Meng; Meihong Zheng; Yonghui Zhang; Aiping Chen; Junhua Wu; Jiwu Wei; J Sivaraman

Reprogrammed metabolism and redox homeostasis are potential targets of cancer therapy. Our previous study demonstrated that the kidney form of glutaminase (GLS1) is highly expressed in hepatocellular carcinoma (HCC) cells and can be used as a target for effective anticancer therapy. Dihydroartemisinin (DHA) increases intracellular reactive oxygen species (ROS) levels leading to cytotoxicity in cancer cells. However, the heterogeneity of cancer cells often leads to differing responses to oxidative lesions. For instance, cancer cells with high ratio of GSH/GSSG, a critical ROS scavenger, are resistant to ROS-induced cytotoxicity. We postulate that a combinatorial strategy firstly disrupting redox homeostasis followed by DHA might yield a profound antitumor efficacy. In this study, when HCC cells were treated with a GLS1 inhibitor 968, the ROS elimination capacity was significantly reduced in HCC cells, which rendered HCC cells but not normal endothelial cells more sensitive to DHA-mediated cytotoxicity. We further confirmed that this synergistic antitumor efficacy was mediated by excessive ROS generation in HCC cells. NAC, a ROS inhibitor, partly rescued the combinatorial cytotoxic effect of 968 and DHA. Given that GLS1 is a potential antitumor target and DHA has been safely used in clinic, our findings provide new insight into liver cancer therapy targeting glutamine metabolism combined with the ROS generator DHA, which can be readily translated into cancer clinical trials.


Scientific Reports | 2018

Exosome-Mimetic Nanovesicles from Hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo

Junyi Wu; Anlai Ji; Zhongxia Wang; Guang-Hui Qiang; Zhen Qu; Junhua Wu; Chunping Jiang

The liver has great regenerative capacity after functional mass loss caused by injury or disease. Many studies have shown that primary hepatocyte-derived exosomes, which can deliver biological information between cells, promote the regenerative process of the liver. However, the yield of exosomes is very limited. Recent studies have demonstrated that exosome-mimetic nanovesicles (NVs) can be prepared from cells with almost 100 times the production yield compared with exosomes. Thus, this study investigated the therapeutic capacity of exosome-mimetic NVs from primary hepatocytes in liver regeneration. Exosome-mimetic NVs were prepared by serial extrusions of cells through polycarbonate membranes, and the yield of these NVs was more than 100 times that of exosomes. The data indicated that the NVs could promote hepatocyte proliferation and liver regeneration by significantly enhancing the content of sphingosine kinase 2 in recipient cells. To the best of our knowledge, this is the first time that exosome-mimetic NVs from primary hepatocytes have been prepared, and these NVs have components similar to exosomes from primary hepatocytes and, in some respects, biofunctions similar to exosomes. Strategies inspired by this study may lead to substitution of exosomes with exosome-mimetic NVs for biofunctional purposes, including utilization in tissue repair and regeneration.


Journal of Translational Medicine | 2018

CD8 + T cells mediate the antitumor activity of frankincense and myrrh in hepatocellular carcinoma

Chun Xu; Xian Lu; Wei Liu; Anxian Chen; Gang Meng; Hailin Zhang; Binghua Li; Yonghui Zhang; Junhua Wu; Jiwu Wei

BackgroundTumor-promoting inflammation is an emerging hallmark of cancer, which participates in both cancer progression and immune escape. Hepatocellular carcinoma (HCC) is a typical inflammation-related cancer with an extremely poor prognosis. Frankincense and myrrh are anti-inflammation agents commonly used in clinic. The purpose of this study is to investigate whether extract of frankincense and myrrh (FM) downregulates inflammatory microenvironment of HCC and thereby restores antitumor immune responses.MethodsThe water-decocting FM was obtained and quantified. HCC cell lines HCCLM3 and Hepa1-6 were used to evaluate the efficacy of FM targeting NF-κB and STAT3 signaling with western blot and qRT-PCR analysis. CD8+NKG2D+ cells were derived from human peripheral blood and were used for evaluation of immune cells-mediated inflammation and oncolysis on HCCLM3 cells. The antitumor efficacy of FM was investigated both in immune compromised and immune competent mice bearing subcutaneous HCC. Mice received daily oral gavage of FM at 60xa0mg/kg. Immune activity within tumor microenvironment (TME) was assessed by ELISpot assay and flow cytometry, respectively. Depletion of CD8+ T cells or NK cells was achieved by intraperitoneal injection of respective neutralizing antibody.ResultsFM significantly inhibited the activation of NF-κB and STAT3 signaling in HCC cells induced by cytokines (TNF-α or IL-6) and in co-culture system with CD8+NKG2D+ cells. Furthermore, FM sensitized HCC cells to CD8+NKG2D+ cells-mediated oncolysis. In HCC-bearing mice, FM at a non-toxic dose failed to reduce tumor growth in immune compromised mice, whereas it significantly inhibited tumor growth and prolonged life span in immune competent mice. While the number of IFN-γ-producing cells within TME was increased in mice treated with FM, the infiltration of CD8+ T cells and NK cells was not increased. Finally, we identified that depletion of CD8+ T cells rather than NK cells abrogated the antitumor activity of FM.ConclusionsOur results show for the first time that CD8+ T cells mediate the antitumor activity of FM at a non-toxic dose. This may provide new insights to this ancient mysterious prescription in cancer therapy, which offers a novel and practical therapeutic strategy and the possibilities of combined immunotherapy for HCC as well as other inflammation-related cancers in clinic.


International Journal of Nanomedicine | 2018

Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy

Junyi Wu; Zhongxia Wang; Guang Zhang; Xian Lu; Guang-Hui Qiang; Wei Hu; Anlai Ji; Junhua Wu; Chunping Jiang

Purpose FTY720, known as fingolimod, is a new immunosuppressive agent with effective anticancer properties. Although it was recently confirmed that FTY720 inhibits cancer cell proliferation, FTY720 can also induce protective autophagy and reduce cytotoxicity. Blocking autophagy with Beclin 1 siRNA after treatment with FTY720 promotes apoptosis. The objective of this study was to enhance the anticancer effect of FTY720 in hepatocellular carcinoma (HCC) by targeted co-delivery of FTY720 and Beclin 1 siRNA using calcium phosphate (CaP) nanoparticles (NPs). Materials and methods First, the siRNA was encapsulated within the CaP core. To form an asymmetric lipid bilayer structure, we then used an anionic lipid for the inner leaflet and a cationic lipid for the outer leaflet; after removing chloroform by rotary evaporation, these lipids were dispersed in a saline solution with FTY720. The NPs were analyzed by transmission electron microscopy, dynamic light scattering and ultraviolet–visible spectrophotometry. Cancer cell viability and cell death were analyzed by MTT assays, fluorescence-activated cell sorting analysis and Western blotting. In addition, the in vivo effects of the NPs were investigated using an athymic nude mouse subcutaneous transplantation tumor model. Results When the CaP NPs, called LCP-II NPs, were loaded with FTY720 and siRNA, they exhibited the expected size and were internalized by cells. These NPs were stable in systemic circulation. Furthermore, co-delivery of FTY720 and Beclin 1 siRNA significantly increased cytotoxicity in vitro and in vivo compared with that caused by treatment with the free drug alone. Conclusion The CaP NP system can be further developed for co-delivery of FTY720 and Beclin 1 siRNA to treat HCC, enhancing the anticancer efficacy of FTY720. Our findings provide a new insight into HCC treatment with co-delivered small molecules and siRNA, and these results can be readily translated into cancer clinical trials.


Biomedicine & Pharmacotherapy | 2018

The anti-inflammatory NHE-06 restores antitumor immunity by targeting NF-κB/IL-6/STAT3 signaling in hepatocellular carcinoma

Xian Lu; Guanqun Wo; Binghua Li; Chun Xu; Junhua Wu; Chunping Jiang; Jiwu Wei

The NF-κB/IL-6/STAT3 inflammatory axis is highly activated in a variety of inflammation-related cancers and contributes to suppression of antitumor immunity. In this study, we generated a novel herbal formula NHE-06, a water-decocting extract from six natural herbals, Ficus carica, Taraxacum mongolicum, Angelica sinensis, Lonicera japonica, Pseudo-ginseng and Folium ginkgo. We investigated the anti-inflammatory properties of NHE-06 and its antitumor efficacy in hepatocellular carcinoma, a typical inflammation-related cancer. We found that NHE-06 effectively suppressed NF-κB/IL-6/STAT3 signaling and enhanced antitumor immunity both in vitro and in HCC-bearing mice. In a subcutaneous HCC mouse model, we found that NHE-06 possessed both preventive and therapeutic functions. Moreover, rather than the cytotoxic effects, the antitumor efficacy of NHE-06 was indispensable of intact immunity, since the therapeutic effect was only achieved in immunocompetent mice whereas failed in immunocompromised mice. Taken together, the novel formula of the anti-inflammatory NHE-06 effectively restores antitumor immunosurveillance and can be applied for prevention and/or treatment of inflammation-related cancers.


Nanoscale | 2015

Hierarchical construction of a mechanically stable peptide–graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo

Junhua Wu; Aiping Chen; Meng Qin; Rong Huang; Guang Zhang; Bin Xue; Jiwu Wei; Ying Li; Yi Cao; Wei Wang

Collaboration


Dive into the Junhua Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Li

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge