Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junichi Iwata is active.

Publication


Featured researches published by Junichi Iwata.


Nature | 2006

Loss of autophagy in the central nervous system causes neurodegeneration in mice

Masaaki Komatsu; Satoshi Waguri; Tomoki Chiba; Shigeo Murata; Junichi Iwata; Isei Tanida; Takashi Ueno; Masato Koike; Yasuo Uchiyama; Eiki Kominami; Keiji Tanaka

Protein quality-control, especially the removal of proteins with aberrant structures, has an important role in maintaining the homeostasis of non-dividing neural cells. In addition to the ubiquitin–proteasome system, emerging evidence points to the importance of autophagy—the bulk protein degradation pathway involved in starvation-induced and constitutive protein turnover—in the protein quality-control process. However, little is known about the precise roles of autophagy in neurons. Here we report that loss of Atg7 (autophagy-related 7), a gene essential for autophagy, leads to neurodegeneration. We found that mice lacking Atg7 specifically in the central nervous system showed behavioural defects, including abnormal limb-clasping reflexes and a reduction in coordinated movement, and died within 28 weeks of birth. Atg7 deficiency caused massive neuronal loss in the cerebral and cerebellar cortices. Notably, polyubiquitinated proteins accumulated in autophagy-deficient neurons as inclusion bodies, which increased in size and number with ageing. There was, however, no obvious alteration in proteasome function. Our results indicate that autophagy is essential for the survival of neural cells, and that impairment of autophagy is implicated in the pathogenesis of neurodegenerative disorders involving ubiquitin-containing inclusion bodies.


Journal of Cell Biology | 2005

Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice

Masaaki Komatsu; Satoshi Waguri; Takashi Ueno; Junichi Iwata; Shigeo Murata; Isei Tanida; Junji Ezaki; Noboru Mizushima; Yoshinori Ohsumi; Yasuo Uchiyama; Eiki Kominami; Keiji Tanaka; Tomoki Chiba

Autophagy is a membrane-trafficking mechanism that delivers cytoplasmic constituents into the lysosome/vacuole for bulk protein degradation. This mechanism is involved in the preservation of nutrients under starvation condition as well as the normal turnover of cytoplasmic component. Aberrant autophagy has been reported in several neurodegenerative disorders, hepatitis, and myopathies. Here, we generated conditional knockout mice of Atg7, an essential gene for autophagy in yeast. Atg7 was essential for ATG conjugation systems and autophagosome formation, amino acid supply in neonates, and starvation-induced bulk degradation of proteins and organelles in mice. Furthermore, Atg7 deficiency led to multiple cellular abnormalities, such as appearance of concentric membranous structure and deformed mitochondria, and accumulation of ubiquitin-positive aggregates. Our results indicate the important role of autophagy in starvation response and the quality control of proteins and organelles in quiescent cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration

Masaaki Komatsu; Qing Jun Wang; Victor L. Friedrich; Junichi Iwata; Eiki Kominami; Brian T. Chait; Keiji Tanaka; Zhenyu Yue

Autophagy is a regulated lysosomal degradation process that involves autophagosome formation and transport. Although recent evidence indicates that basal levels of autophagy protect against neurodegeneration, the exact mechanism whereby this occurs is not known. By using conditional knockout mutant mice, we report that neuronal autophagy is particularly important for the maintenance of local homeostasis of axon terminals and protection against axonal degeneration. We show that specific ablation of an essential autophagy gene, Atg7, in Purkinje cells initially causes cell-autonomous, progressive dystrophy (manifested by axonal swellings) and degeneration of the axon terminals. Consistent with suppression of autophagy, no autophagosomes are observed in these dystrophic swellings, which is in contrast to accumulation of autophagosomes in the axonal dystrophic swellings under pathological conditions. Axonal dystrophy of mutant Purkinje cells proceeds with little sign of dendritic or spine atrophy, indicating that axon terminals are much more vulnerable to autophagy impairment than dendrites. This early pathological event in the axons is followed by cell-autonomous Purkinje cell death and mouse behavioral deficits. Furthermore, ultrastructural analyses of mutant Purkinje cells reveal an accumulation of aberrant membrane structures in the axonal dystrophic swellings. Finally, we observe double-membrane vacuole-like structures in wild-type Purkinje cell axons, whereas these structures are abolished in mutant Purkinje cell axons. Thus, we conclude that the autophagy protein Atg7 is required for membrane trafficking and turnover in the axons. Our study implicates impairment of axonal autophagy as a possible mechanism for axonopathy associated with neurodegeneration.


Molecular Biology of the Cell | 2008

The Atg8 Conjugation System Is Indispensable for Proper Development of Autophagic Isolation Membranes in Mice

Yu-shin Sou; Satoshi Waguri; Junichi Iwata; Takashi Ueno; Tsutomu Fujimura; Taichi Hara; Naoki Sawada; Akane Yamada; Noboru Mizushima; Yasuo Uchiyama; Eiki Kominami; Keiji Tanaka; Masaaki Komatsu

Autophagy is an evolutionarily conserved bulk-protein degradation pathway in which isolation membranes engulf the cytoplasmic constituents, and the resulting autophagosomes transport them to lysosomes. Two ubiquitin-like conjugation systems, termed Atg12 and Atg8 systems, are essential for autophagosomal formation. In addition to the pathophysiological roles of autophagy in mammals, recent mouse genetic studies have shown that the Atg8 system is predominantly under the control of the Atg12 system. To clarify the roles of the Atg8 system in mammalian autophagosome formation, we generated mice deficient in Atg3 gene encoding specific E2 enzyme for Atg8. Atg3-deficient mice were born but died within 1 d after birth. Conjugate formation of mammalian Atg8 homologues was completely defective in the mutant mice. Intriguingly, Atg12-Atg5 conjugation was markedly decreased in Atg3-deficient mice, and its dissociation from isolation membranes was significantly delayed. Furthermore, loss of Atg3 was associated with defective process of autophagosome formation, including the elongation and complete closure of the isolation membranes, resulting in malformation of the autophagosomes. The results indicate the essential role of the Atg8 system in the proper development of autophagic isolation membranes in mice.


Journal of Biological Chemistry | 2006

Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals

Junichi Iwata; Junji Ezaki; Masaaki Komatsu; Sadaki Yokota; Takashi Ueno; Isei Tanida; Tomoki Chiba; Keiji Tanaka; Eiki Kominami

Peroxisomes are degraded by autophagic machinery termed “pexophagy” in yeast; however, whether this is essential for peroxisome degradation in mammals remains unknown. Here we have shown that Atg7, an essential gene for autophagy, plays a pivotal role in the degradation of excess peroxisomes in mammals. Following induction of peroxisomes by a 2-week treatment with phthalate esters in control and Atg7-deficient livers, peroxisomal degradation was monitored within 1 week after discontinuation of phthalate esters. Although most of the excess peroxisomes in the control liver were selectively degraded within 1 week, this rapid removal was exclusively impaired in the mutant liver. Furthermore, morphological analysis revealed that surplus peroxisomes, but not mutant hepatocytes, were surrounded by autophagosomes in the control. Our results indicated that the autophagic machinery is essential for the selective clearance of excess peroxisomes in mammals. This is the first direct evidence for the contribution of autophagic machinery in peroxisomal degradation in mammals.


Autophagy | 2011

Liver autophagy contributes to the maintenance of blood glucose and amino acid levels

Junji Ezaki; Naomi Matsumoto; Mitsue Takeda-Ezaki; Masaaki Komatsu; Katsuyuki Takahashi; Yuka Hiraoka; Hikari Taka; Tsutomu Fujimura; Kenji Takehana; Mitsutaka Yoshida; Junichi Iwata; Isei Tanida; Norihiko Furuya; Dong Mei Zheng; Keiji Tanaka; Eiki Kominami; Takashi Ueno

Both anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose via gluconeogenesis. Under a synchronous fasting-initiation regimen, autophagy was induced concomitantly with a fall in plasma insulin in the presence of stable glucagon levels, resulting in a robust amino acid release. In liver-specific autophagy (Atg7)-deficient mice, no amino acid release occurred and blood glucose levels continued to decrease in contrast to those of wild-type mice. Administration of serine (30 mg/animal) exerted a comparable effect, raising the blood glucose levels in both control wild-type and mutant mice under starvation. Thus, the absence of the amino acids that were released by autophagic proteolysis is a major reason for a decrease in blood glucose. Autophagic amino acid release in control wild-type livers was significantly suppressed by the prior administration of glucose, which elicited a prompt increase in plasma insulin levels. This indicates that insulin plays a dominant role over glucagon in controlling liver autophagy. These results are the first to show that liver-specific autophagy plays a role in blood glucose regulation.


Journal of Clinical Investigation | 2012

Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice

Junichi Iwata; Joseph G. Hacia; Akiko Suzuki; Pedro A. Sanchez-Lara; Mark M. Urata; Yang Chai

Patients with mutations in either TGF-β receptor type I (TGFBR1) or TGF-β receptor type II (TGFBR2), such as those with Loeys-Dietz syndrome, have craniofacial defects and signs of elevated TGF-β signaling. Similarly, mutations in TGF-β receptor gene family members cause craniofacial deformities, such as cleft palate, in mice. However, it is unknown whether TGF-β ligands are able to elicit signals in Tgfbr2 mutant mice. Here, we show that loss of Tgfbr2 in mouse cranial neural crest cells results in elevated expression of TGF-β2 and TGF-β receptor type III (TβRIII); activation of a TβRI/TβRIII-mediated, SMAD-independent, TRAF6/TAK1/p38 signaling pathway; and defective cell proliferation in the palatal mesenchyme. Strikingly, Tgfb2, Tgfbr1 (also known as Alk5), or Tak1 haploinsufficiency disrupted TβRI/TβRIII-mediated signaling and rescued craniofacial deformities in Tgfbr2 mutant mice, indicating that activation of this noncanonical TGF-β signaling pathway was responsible for craniofacial malformations in Tgfbr2 mutant mice. Thus, modulation of TGF-β signaling may be beneficial for the prevention of congenital craniofacial birth defects.


Cancer Research | 2007

Cathepsin E Prevents Tumor Growth and Metastasis by Catalyzing the Proteolytic Release of Soluble TRAIL from Tumor Cell Surface

Tomoyo Kawakubo; Kuniaki Okamoto; Junichi Iwata; Masashi Shin; Yoshiko Okamoto; Atsushi Yasukochi; Keiichi I. Nakayama; Tomoko Kadowaki; Takayuki Tsukuba; Kenji Yamamoto

The aspartic proteinase cathepsin E is expressed predominantly in cells of the immune system and highly secreted by activated phagocytes, and deficiency of cathepsin E in mice results in a phenotype affecting immune responses. However, because physiologic substrates for cathepsin E have not yet been identified, the relevance of these observations to the physiologic functions of this protein remains speculative. Here, we show that cathepsin E specifically induces growth arrest and apoptosis in human prostate carcinoma tumor cell lines without affecting normal cells by catalyzing the proteolytic release of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) from the cell surface. The antitumor activity of cathepsin E was corroborated by in vivo studies with mice bearing human and mouse tumor transplants. Administration of purified cathepsin E into human tumor xenografts in nude mice dose-dependently induced apoptosis in the tumor cells to inhibit tumor growth. The growth, viability, and metastasis of mouse B16 melanoma cells were also more profound in cathepsin E-deficient mice compared with those in the syngeneic wild-type and transgenic mice overexpressing cathepsin E. Taken together, the number of apoptotic tumor cells, as well as tumor-infiltrating activated macrophages, was apparently reduced in cathepsin E-deficient mice compared with those in the other two groups, implying the positive correlation of endogenous cathepsin E levels with the extent of tumor suppression in vivo. These results thus indicate that cathepsin E plays a substantial role in host defense against tumor cells through TRAIL-dependent apoptosis and/or tumor-associated macrophage-mediated cytotoxicity.


Developmental Biology | 2011

The FaceBase Consortium: a comprehensive program to facilitate craniofacial research.

Harry Hochheiser; Bruce J. Aronow; Kristin Bruk Artinger; Terri H. Beaty; James F. Brinkley; Yang Chai; David E. Clouthier; Michael L. Cunningham; Michael Dixon; Leah Rae Donahue; Scott E. Fraser; Benedikt Hallgrímsson; Junichi Iwata; Ophir D. Klein; Mary L. Marazita; Jeffrey C. Murray; Stephen A. Murray; Fernando Pardo-Manuel de Villena; John H. Postlethwait; S. Steven Potter; Linda G. Shapiro; Richard A. Spritz; Axel Visel; Seth M. Weinberg; Paul A. Trainor

The FaceBase Consortium consists of ten interlinked research and technology projects whose goal is to generate craniofacial research data and technology for use by the research community through a central data management and integrated bioinformatics hub. Funded by the National Institute of Dental and Craniofacial Research (NIDCR) and currently focused on studying the development of the middle region of the face, the Consortium will produce comprehensive datasets of global gene expression patterns, regulatory elements and sequencing; will generate anatomical and molecular atlases; will provide human normative facial data and other phenotypes; conduct follow up studies of a completed genome-wide association study; generate independent data on the genetics of craniofacial development, build repositories of animal models and of human samples and data for community access and analysis; and will develop software tools and animal models for analyzing and functionally testing and integrating these data. The FaceBase website (http://www.facebase.org) will serve as a web home for these efforts, providing interactive tools for exploring these datasets, together with discussion forums and other services to support and foster collaboration within the craniofacial research community.


Development | 2013

Smad4-Irf6 genetic interaction and TGFβ-mediated IRF6 signaling cascade are crucial for palatal fusion in mice

Junichi Iwata; Akiko Suzuki; Richard Pelikan; Thach-Vu Ho; Pedro A. Sanchez-Lara; Mark M. Urata; Michael J. Dixon; Yang Chai

Cleft palate is one of the most common human birth defects and is associated with multiple genetic and environmental risk factors. Although mutations in the genes encoding transforming growth factor beta (TGFβ) signaling molecules and interferon regulatory factor 6 (Irf6) have been identified as genetic risk factors for cleft palate, little is known about the relationship between TGFβ signaling and IRF6 activity during palate formation. Here, we show that TGFβ signaling regulates expression of Irf6 and the fate of the medial edge epithelium (MEE) during palatal fusion in mice. Haploinsufficiency of Irf6 in mice with basal epithelial-specific deletion of the TGFβ signaling mediator Smad4 (Smad4fl/fl;K14-Cre;Irf6+/R84C) results in compromised p21 expression and MEE persistence, similar to observations in Tgfbr2fl/fl;K14-Cre mice, although the secondary palate of Irf6+/R84C and Smad4fl/fl;K14-Cre mice form normally. Furthermore, Smad4fl/fl;K14-Cre;Irf6+/R84C mice show extra digits that are consistent with abnormal toe and nail phenotypes in individuals with Van der Woude and popliteal pterygium syndromes, suggesting that the TGFβ/SMAD4/IRF6 signaling cascade might be a well-conserved mechanism in regulating multiple organogenesis. Strikingly, overexpression of Irf6 rescued p21 expression and MEE degeneration in Tgfbr2fl/fl;K14-Cre mice. Thus, IRF6 and SMAD4 synergistically regulate the fate of the MEE, and TGFβ-mediated Irf6 activity is responsible for MEE degeneration during palatal fusion in mice.

Collaboration


Dive into the Junichi Iwata's collaboration.

Top Co-Authors

Avatar

Akiko Suzuki

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yang Chai

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Pedro A. Sanchez-Lara

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark M. Urata

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge