Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junichi Ueda is active.

Publication


Featured researches published by Junichi Ueda.


Journal of Plant Research | 1999

Growth and Development, and Auxin Polar Transport in Higher Plants under Microgravity Conditions in Space: BRIC-AUX on STS-95 Space Experiment

Junichi Ueda; Tomokazu Yuda; Tomoki Hoshino; Shuhei Fujii; Chiaki Mukai; Shigeki Kamigaichi; Sachiko Aizawa; Izumi Yoshizaki; Toru Shimazu; Keiji Fukui

The principal objectives of the space experiment, BRIC-AUX on STS 95, were the integrated analysis of the growth and development of etiolated pea and maize seedlings in space and a study of the effects of microgravity conditions in space on auxin polar transport in these segments. Microgravity significantly affected the growth and development of etiolated pea and maize seedlings. Epicotyls of etiolated pea seedlings were the most oriented toward about 40 to 60 degrees from the vertical. Mesocotyls of etiolated maize seedlings were curved at random during space flight but coleoptiles were almost straight. Finally the growth inhibition of these seedlings in space was also observed. Roots of some pea seedlings grew toward to the aerial space of Plant Growth Chamber. Extensibilities of cell walls of the third internode of etiolated pea epicotyls and the top region of etiolated maize coleoptiles, which were germinated and grown under microgravity conditions in space, were significantly low as compared with those grown on the ground of the earth. Activities of auxin polar transport in the second internode segments of etiolated pea seedlings and coleoptile segments of etiolated maize seedlings were significantly inhibited and promoted, respectively, under microgravity conditions in space. These results strongly suggest that auxin polar transport as well as the growth and development of plants is controlled under gravity on the earth.


Journal of Plant Growth Regulation | 1998

Effects of Methyl Jasmonate on Anthocyanin Accumulation, Ethylene Production, and CO2 Evolution in Uncooled and Cooled Tulip Bulbs

Marian Saniewski; A. Miszczak; L. Kawa-Miszczak; E. Wegrzynowicz-Lesiak; Junichi Ueda

Abstract. Effects of methyl jasmonate (JA-Me) on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulips (Tulipa gesneriana L. cvs. Apeldoorn and Gudoshnik) were studied. JA-Me stimulated anthocyanin accumulation in stems and leaves from uncooled and cooled bulbs of both cultivars. The highest level of anthocyanin accumulation was observed in leaves from cooled bulbs treated with 200 μL/liter JA-Me. In sprouting bulbs treated with 100 μL/liter and higher concentrations of JA-Me, the ethylene production began to increase at 3 days after treatment, being extremely greater in uncooled bulbs than in cooled ones. JA-Me also stimulated CO2 evolution in both cultivars, depending on its concentrations. CO2 evolution in sprouting bulbs was not affected by cooling treatment. These results suggest that anthocyanin accumulation by JA-Me in tulip leaves is not related to ethylene production stimulated by JA-Me.


Journal of Plant Growth Regulation | 1998

Methyl Jasmonate Induces Gums and Stimulates Anthocyanin Accumulation in Peach Shoots

Marian Saniewski; Junichi Ueda

Abstract. The effect of methyl jasmonate (JA-Me) on the induction of gum was studied in relation to the action of ethylene in peach (Prunus persica Batsch cv. Benishimizu) shoots. JA-Me applied at concentrations of 0.1–2.5% (w/w) in lanolin paste to current growing or older shoots substantially induced gums 3 days after treatment. The amount of gums exuded increased depending on the dose of JA-Me. Ethephon (2-chloroethyl- phosphonic acid) at 1 or 2% (w/w) in lanolin induced gum and strongly enhanced the promoting effect of JA-Me on gum formation. JA-Me also induced anthocyanin accumulation in current growing shoots, but ethephon did not. Anthocyanin accumulation in response to JA-Me at a concentration of 10 mg/liter or higher was observed also in the cut shoots of peach. Ethephon (100 mg/liter) substantially inhibited anthocyanin accumulation induced by JA-Me. These facts suggest that JA-Me plays an important role in gum formation as well as ethylene and in anthocyanin accumulation and that these processes are not necessarily accompanied by each other in peach shoots.


Journal of Plant Growth Regulation | 1996

Jasmonates promote abscission in bean petiole expiants: Its relationship to the metabolism of cell wall polysaccharides and cellulase activity

Junichi Ueda; M. Hashimoto

Jasmonic acid (JA) and its methyl ester (JA-Me) promoted the abscission of bean petiole expiants in the dark and light, and the activity of these compounds was almost same. JA and JA-Me did not enhance ethylene production in bean petiole expiants in the light, indicating that the abscission-promoting effects of these compounds are not the result of ethylene. Cells in the petiole adjacent to the abscission zone expanded during abscission but not in the pulvinus, and JA-Me promoted cell expansion in the petiole and the pulvinus. JA-Me had no effect on the total amounts of pectic and hemicellulosic polysaccharides in 2-mm segments of the abscission region, which included 1 mm of pulvinus and 1 mm of petiole from the abscission zone. On the other hand, the total amounts of cellulosic polysaccharides in this region were reduced significantly by the addition of JA-Me in the light. JA-Me had no effect on the neutral sugar composition of hemicellulosic polysaccharides during abscission. The decrease in the endogenous levels of UDP-sugars in the petiole adjacent to the abscission zone was accelerated during abscission by the addition of JA-Me in the light. Cellulase activities of pulvinus and petiole in 10-day-old seedlings were enhanced by the addition of JA. These results suggest that the promoting effect of JA or JA-Me on the abscission of bean petiole explants is due to the change of sugar metabolism in the abscission zone, in which the increase in cellulase activity involves the degradation of cell wall polysaccharides. Jasmonic acid (JA) and its methyl ester (JA-Me) are considered to be putative plant hormones for a number of reasons, including their wide occurrence in the plant kingdom, biologic, activities in multiple aspects at low concentrations, and their interaction with other plant hormones (for reviews see Parthier 1991, Hamberg and Gardner 1992, Sembdner and Parthier 1993, Ueda et al. 1994a). We have already reported that JA and JA-Me and C18-unsaturated fatty acids, which are considered to be the substrates of the biosynthesis of jasmonates, are powerful senescence-promoting substances (Ueda et al. 1982b, 1991a). Senescence symptoms induced by these compounds are identical to those of natural senescence. Recently we have also found that JA inhibited indole-3-acetic acid (IAA)-induced elongation of oat (Avena sativa L. cv. Victory) coleoptile segments by inhibiting the synthesis of cell wall polysaccharides (Ueda et al. 1994b, 1995). These facts led us to study the mode of actions of JA and JA-Me on promoting abscission, which is considered the last dramatic phenomenon of senescence. In this paper we report that JA and JA-Me promote abscission in bean (Phaseolus vulgaris L. cv. Masterpiece) petiole expiants and that the changes in the metabolism of cell wall polysaccharides in the petiole and the pulvinus adjacent to the abscission zone are involved in the promotive effects of these compounds.


Journal of Plant Growth Regulation | 1995

Inhibition of the synthesis of cell wall polysaccharides in oat coleoptile segments by jasmonic acid: Relevance to its growth inhibition

Junichi Ueda; Seiichiro Kamisaka

The inhibitory mode of action of jasmonic acid (JA) on the growth of etiolated oat (Avena sativa L. cv. Victory) coleoptile segments was studied in relation to the synthesis of cell wall polysaccharides using [14C]glucose. Exogenously applied JA significantly inhibited indoleacetic acid (IAA)-induced elongation of oat coleoptile segments and prevented the increase of the total amounts of cell wall polysaccharides in both the noncellulosic and cellulosic fractions during coleoptile growth. JA had no effect on neutral sugar compositions of hemicellulosic polysaccharides but substantially inhibited the IAA-stimulated incorporation of [14C]glucose into noncellulosic and cellulosic polysaccharides. JA-induced inhibition of growth was completely prevented by pretreating segments with 30 mm sucrose for 4 h before the addition of IAA. The endogenous levels of UDP-sugars, which are key intermediates for the synthesis of cell wall polysaccharides, were not reduced significantly by JA. Although these observations suggest that the inhibitory mode of action of JA associated with the growth of oat coleoptile segments is relevant to sugar metabolism during cell wall polysaccharide synthesis, the precise site of inhibition remains to be investigated.


Acta Physiologiae Plantarum | 2003

Methyl jasmonate stimulates the formation and the accumulation of anthocyanin in Kalanchoe blossfeldiana

Marian Saniewski; Marcin Horbowicz; Jerzy Puchalski; Junichi Ueda

Methyl jasmonate (JA-Me) at concentrations of 0.1, 0.5 and 1.0 % (w/w) greatly stimulated anthocyanins accumulation in shoots of young plants of Kalanchoe blossfeldiana when it was applied around the stem as a lanolin paste. Stimulatory effect of JA-Me was evidently observed as early as two days after treatment. Anthocyanins were formed in the main and lateral shoots, including petioles, both below and above portions of the treatment. When leaves were removed from the plant, almost no anthocyanin formation was observed. It should be mentioned that leaves are necessary for the anthocyanin accumulation in stems induced by JA-Me.


Journal of Chromatography A | 1994

Separation of a new type of plant growth regulator, jasmonates, by chromatographic procedures

Junichi Ueda; Seiichiro Kamisaka

Abstract Jasmonic acid and its related compounds are short-chain alkylcyclopentanone or alkylcyclopentane carboxylic acids and their derivatives, and have been recognized as a new type of plant growth regulator because of their wide occurrence in the plant kingdom together with abscisic acid-like physiological activities at low concentrations. These compounds each have two enantiomeric and diastereomeric forms due to the presence of the two chiral centres in the cyclopentanone or cyclopentane ring. For this reason, the separation of jasmonates is relatively difficult. This review surveys the experimental conditions for the separation of jasmonates using column chromatography, thin-layer chromatography, gas chromatography and high-performance liquid chromatography and some other techniques in the purification procedure based on their chemical properties. Qualitative and quantitative analyses of jasmonates using combined gas chromatography-mass spectrometry and with selected-ion monitoring are also described.


Journal of Plant Growth Regulation | 1998

Gum Formation by Methyl Jasmonate in Tulip Shoots is Stimulated by Ethylene

Marian Saniewski; Junichi Ueda

Abstract. The promotive effect of methyl jasmonate (JA-Me) on the induction of gum in tulip shoots (Tulipa gesneriana L. cvs. Gudoshnik and Apeldoorn) was studied in the presence of ethylene. Gum formation in the stem and the basal part of the leaves was induced by JA-Me (1% w/w in lanolin) and stimulated strongly by the simultaneous application of 1 or 5 mm 1-aminocyclopropane-1-carboxylic acid (ACC). JA-Me at a concentration of 0.1% did not induce gum, but that together with ACC at a concentration of 1 or 5 mm induced it substantially. Although JA-Me stimulated ethylene production substantially in the stem of intact tulips, ethephon (1% w/w) or ACC (1 or 5 mm) did not induce gum formation in tulip shoots. JA-Me induced gum formation in tulip shoots even in the presence of aminooxyacetic acid or cobalt ions. Moreover, gum formation was also observed in the cut shoot applied with JA-Me as a solution at concentrations of 0.23 mm or more. These results strongly suggest that JA-Me is required for gum formation in tulip shoots, and ethylene probably makes the tissues of shoots sensitive to JA-Me.


Acta Physiologiae Plantarum | 2002

Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants

Marian Saniewski; Junichi Ueda

Growth and development of plants are regulated by interactions among different plant growth substances. During stress conditions, both abiotic and biotic, interaction of the some hormones activates defense responses. The present review describes the interaction between jasmonates and auxin in regulation of some physiological processes in plant growth and development. Some jasmonate-induced processes reduced by auxins and some auxin stimulated physiological processes inhibited by jasmonates are the focus of this review. Therefore, the following physiological processes are described: stem cell growth, abscission, secondary abscission zone formation, tendril coiling, opening of the pulvinules in Mimosa pudica, wounding and induced gene expression, nicotine biosynthesis and auxin biosynthesis in Brassicaceae.


Advances in Space Research | 2001

Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

Toru Shimazu; Tomokazu Yuda; Masamichi Yamashita; Junichi Ueda

Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

Collaboration


Dive into the Junichi Ueda's collaboration.

Top Co-Authors

Avatar

Marian Saniewski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoki Hoshino

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kensuke Miyamoto

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar

Marian Saniewski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Eiji Uheda

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Shimazu

Osaka Prefecture University

View shared research outputs
Researchain Logo
Decentralizing Knowledge