Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junichiro Yamabe is active.

Publication


Featured researches published by Junichiro Yamabe.


Journal of Pressure Vessel Technology-transactions of The Asme | 2015

Pressure Cycle Testing of Cr–Mo Steel Pressure Vessels Subjected to Gaseous Hydrogen

Junichiro Yamabe; Hisatake Itoga; Tohru Awane; Takashi Matsuo; Hisao Matsunaga; Saburo Matsuoka

Pressure cycle tests were performed on two types of Cr–Mo steel pressure vessels with notches machined on their inside under hydrogen-gas pressures, between 0.6 and 45 MPa at room temperature. Fatigue crack growth (FCG) and fracture toughness tests of the Cr–Mo steels samples from the vessels were also carried out in gaseous hydrogen. The Cr–Mo steels showed accelerated FCG rates in gaseous hydrogen compared to ambient air. The fracture toughness of the Cr–Mo steels in gaseous hydrogen was significantly smaller than that in ambient air. Four pressure vessels were tested with gaseous hydrogen. All pressure vessels failed by leak-before-break (LBB). The LBB failure of one pressure vessel could not be estimated by using the fracture toughness in gaseous hydrogen KIC,H; accordingly, the LBB assessment based on KIC,H is conservative and there is a possibility that KIC,H does not provide a reasonable assessment of LBB. In contrast, the fatigue lives of all pressure vessels could be estimated by using the accelerated FCG rates in gaseous hydrogen.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2017

Comprehensive Understanding of Ductility Loss Mechanisms in Various Steels with External and Internal Hydrogen

Osamu Takakuwa; Junichiro Yamabe; Hisao Matsunaga; Yoshiyuki Furuya; Saburo Matsuoka

Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.


ASME 2014 Pressure Vessels and Piping Conference, PVP 2014 | 2014

Fatigue-life and leak-before-break assessments of CR-MO steel pressure vessels with high-pressure gaseous hydrogen

Junichiro Yamabe; Hisatake Itoga; Tohru Awane; Hisao Matsunaga; Shigeru Hamada; Saburo Matsuoka

Pressure cycle tests were performed on two types of Cr-Mo steel pressure vessels with inner diameters of 306 mm and 210 mm and notches machined on their inside under hydrogen-gas pressures, varied between 0.6 and 45 MPa at room temperature. One of the Cr-Mo steels had a fine microstructure with tensile strength of 828 MPa, while the other had a coarse microstructure with tensile strength of 947 MPa. Fatigue-crack growth (FCG) and fracture-toughness tests of the Cr-Mo steels were also carried out in gaseous hydrogen. The Cr-Mo steels showed accelerated FCG rates in gaseous hydrogen compared to ambient air with an upper bound corresponding to an approximately 30-times higher FCG rate. Furthermore, in gaseous hydrogen, the fracture toughness of the Cr-Mo steel with coarse microstructure was significantly smaller than that of the steel with fine microstructure. Four pressure vessels were tested; then, all of the pressure vessels failed by leak-before-break (LBB). Based on the fracture-mechanics approach, the LBB failure of one pressure vessel could not be estimated by using the fracture toughness in gaseous hydrogen. The fatigue lives could be estimated by using the upper bound of the accelerated FCG rates in gaseous hydrogen.Copyright


Philosophical Transactions of the Royal Society A | 2017

Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence

Hisao Matsunaga; Osamu Takakuwa; Junichiro Yamabe; Saburo Matsuoka

In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors. This article is part of the themed issue ‘The challenges of hydrogen and metals’.


ASME 2015 Pressure Vessels and Piping Conference, PVP 2015 | 2015

Hydrogen-assisted cracking of Cr-Mo steel in slow strain rate tensile test with high-pressure gaseous hydrogen

Hisao Matsunaga; Michio Yoshikawa; Ryota Kondo; Hisatake Itoga; Junichiro Yamabe; Saburo Matsuoka

Slow strain rate tensile (SSRT) tests were performed using smooth specimens of quenched and tempered JIS-SCM435 steels with three different tensile strengths (TS), which are ranged from 824 to 1127 MPa. The tests were carried out in 115 MPa hydrogen gas and reference gases (air or 115 MPa nitrogen gas) at three different temperatures; 233 K, room temperature (RT) and 393 K. In the reference gases, the specimens exhibited the so-called cup-and-cone fracture at every temperature. On the other hand, in hydrogen gas, a number of cracks initiated at specimen surface and grew, which led to a marked reduction in ductility at every temperature. The crack growth curves were obtained as a function of true strain by observing the specimen surface of the fractured specimens. The true strain at which the hydrogen-assisted cracking starts was strongly dependent on the microstructure, strength level and test temperature. However, in all the materials tested at RT, the hydrogen-assisted cracking did not occur during the uniform deformation, but occurred in the necking process. Even at 233 K and 393 K, the material with a moderate strength did not exhibit the hydrogen-enhanced cracking before reaching the TS. The result ensured that the Cr-Mo steel with a moderate strength can maintain the TS even in 115 MPa hydrogen from the viewpoint of fracture mechanism.Copyright


ASME 2014 Pressure Vessels and Piping Conference, PVP 2014 | 2014

Tensile- and Fatigue-Properties of Low Alloy Steel JIS-SCM435 and Carbon Steel JIS-SM490B in 115 MPA Hydrogen Gas

Hisao Matsunaga; Michio Yoshikawa; Hisatake Itoga; Junichiro Yamabe; Shigeru Hamada; Saburo Matsuoka

Slow strain rate tests using smooth specimens of two types of steels, low alloy steel JIS-SCM435 and carbon steel JIS-SM490B, were carried out in nitrogen gas and hydrogen gas under a pressure of 115 MPa at three different temperatures: 233 K, room temperature and 393 K. In nitrogen gas, these steels exhibited the so-called cup-and-cone fracture at every temperature. On the other hand, in hydrogen gas, in both steels a number of cracks initiated on the specimen surface and coalesced with each other at every temperature, which led to a marked reduction in ductility. Nonetheless, even in hydrogen gas, JIS-SCM435 exhibited a certain reduction of area after the stress-displacement curve reached the tensile strength (TS), whereas JIS-SM490B exhibited little, if any, necking in hydrogen gas. In addition, tension-compression fatigue testing at room temperature revealed that in both steels there was no noticeable difference between the fatigue strengths in air and 115MPa hydrogen gas, especially in a relatively long life regime. Considering that there was little or no hydrogen-induced degradation in either TS or fatigue strength in JIS-SCM435, it is suggested that JIS-SCM435 is eligible for fatigue limit design on the basis of a safety factor (i.e. TS divided by the allowable design stress) for mechanical components used in hydrogen gas up to 115 MPa.Copyright


Key Engineering Materials | 2013

Microscopic Mechanism of Hydrogen Embrittlement in Fatigue and Fracture

Yukitaka Murakami; Junichiro Yamabe; Hisao Matsunaga

The microscope mechanism of hydrogen embrittlement (HE) is overviewed from the viewpoint of Mechanics-Microstructure-Environment Interactions. The plastic deformation (Mechanics) at crack tip for low strength steel is controlled by hydrogen concentration (Environment) to crack tip, eventually resulting in very strong time dependent phenomenon in static fracture and fatigue crack growth. Various typical phenomena in low strength steels which can be understood from the viewpoint of Mechanics-Environment Interactions will be presented. Fracture and fatigue of high strength steels (Microstructure) are strongly influenced by hydrogen. Especially, fatigue crack growth is remarkably accelerated by hydrogen-induced deformation twins. The HE phenomemon of the high-strength steels was applied to a newly inclusion rating method. Hydrogen trapped by nonmetalliec inclusions causes the elimination of fatigue limit at very high cycle fatigue. The values of threshold stress intensity factor KTH in hydrogen for small cracks are much smaller than those for long cracks measured by the standard WOL or CT specimens, which are eventually unconservative for the design of hydrogen components. This phenomenon is similar to the small crack problem in fatigue.


Solid State Phenomena | 2016

Hydrogen-induced ductility loss of austenitic stainless steels for slow strain rate tensile testing in high-pressure hydrogen gas

Saburo Matsuoka; Junichiro Yamabe; Hisao Matsunaga

For slow strain rate tensile (SSRT) test in hydrogen gas, the degradation in relative reduction in area (RRA) of 300-series austenitic stainless steels is mainly attributed to hydrogen-assisted surface crack growth (HASCG) accompanied by quasi-cleavages. To establish novel criteria for authorizing various austenitic stainless steels for use in high-pressure gaseous hydrogen, a mechanism of the HASCG should be elucidated. At first, this study performed SSRT tests on six types of austenitic stainless steels, Types 304, 316, 316L, 306(hi-Ni), 304N2 and 304(N), in high-pressure hydrogen gas and showed that the RRAs were successfully quantified in terms of a newly-proposed nickel-equivalent equation. Then, to elucidate the microscopic mechanism of the HASCG, elasto-plastic fracture toughness (JIC), fatigue crack growth (FCG) and fatigue life tests on Types 304, 316 and 316L were carried out in high-pressure hydrogen gas. The results demonstrated that the SSRT surface crack grew via the same mechanism as for the JIC and fatigue cracks, i.e., these cracks successively grow with a sharp shape under the loading process, due to local slip deformations near the crack tip by hydrogen. Detailed observations of SSRT surface cracks on Types 304 and 316L were also performed, exhibiting that the onset of the HASCG occurred at the true strain of 0.1 or larger in high-pressure hydrogen gas.


Archive | 2016

Hydrogen Safety in Practice

Junichiro Yamabe; Nobuhiro Kuriyama

This chapter introduces the near miss reports at Kyushu University submitted from 2007 to 2013 in terms of system- or organization-related problems due to machine functions and safety measures and human errors due to unconscious behavior, impulsive behavior, incomplete recognition and knowledge, and disregard of rules.


Archive | 2016

Structural Design and Testing

Junichiro Yamabe

This chapter describes various design methods of components in consideration for the detrimental effect of hydrogen. Based on the design method, fatigue life and leak before break assessments of Cr–Mo steel pressure vessels subjected to hydrogen-pressure cycling are performed.

Collaboration


Dive into the Junichiro Yamabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaki Fujikawa

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge