Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junji Kawashima is active.

Publication


Featured researches published by Junji Kawashima.


Biochemical and Biophysical Research Communications | 2003

Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic β-cells

Koji Sakai; Kazuya Matsumoto; Takeshi Nishikawa; Mihoshi Suefuji; Kazuhiko Nakamaru; Yoshiaki Hirashima; Junji Kawashima; Tetsuya Shirotani; Kenshi Ichinose; Michael Brownlee; Eiichi Araki

Pancreatic beta-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because beta-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of beta-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also suppressed by H(2)O(2), a chemical substitute for ROS. Interestingly, the first-phase of GIIS could be suppressed by 50 microM H(2)O(2). H(2)O(2) or high glucose suppressed the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, and inhibitors of the mitochondrial function abolished the latter effects. Our data suggested that high glucose induced mitochondrial ROS, which suppressed first-phase of GIIS, at least in part, through the suppression of GAPDH activity. We propose that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.


Biochemical and Biophysical Research Communications | 2009

Angptl 4 deficiency improves lipid metabolism, suppresses foam cell formation and protects against atherosclerosis

Hironori Adachi; Yukio Fujiwara; Tatsuya Kondo; Takeshi Nishikawa; Rei Ogawa; Takeshi Matsumura; Norio Ishii; Ryoji Nagai; Keishi Miyata; Mitsuhisa Tabata; Hiroyuki Motoshima; Noboru Furukawa; Kaku Tsuruzoe; Junji Kawashima; Motohiro Takeya; Shizuya Yamashita; Gou Young Koh; Andras Nagy; Toshio Suda; Yuichi Oike; Eiichi Araki

Angiopoietin-like protein family 4 (Angptl 4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). We generated ApoE(-/-)Angptl 4(-/-) mice to study the effect of Angptl 4 deficiency on lipid metabolism and atherosclerosis. Fasting and postolive oil-loaded triglyceride (TG) levels were largely decreased in ApoE(-/-)Angptl 4(-/-) mice compared with and ApoE(-/-)Angptl 4(+/+) mice. There was a significant (75+/-12%) reduction in atherosclerotic lesion size in ApoE(-/-)Angptl 4(-/-) mice compared with ApoE(-/-) Angptl 4(+/+) mice. Peritoneal macrophages, isolated from Angptl 4(-/-) mice to investigate the foam cell formation, showed a significant decrease in newly synthesized cholesteryl ester (CE) accumulation induced by acetyl low-density lipoprotein (acLDL) compared with those from Angptl 4(+/+) mice. Thus, genetic knockout of Angptl 4 protects ApoE(-/-) mice against development and progression of atherosclerosis and strongly suppresses the ability of the macrophages to become foam cells in vitro.


Diabetologia | 2003

Insulin down-regulates resistin mRNA through the synthesis of protein(s) that could accelerate the degradation of resistin mRNA in 3T3-L1 adipocytes

Junji Kawashima; Kaku Tsuruzoe; Hiroyuki Motoshima; Atsuhisa Shirakami; K. Sakai; Yoshiaki Hirashima; Tetsushi Toyonaga; Eiichi Araki

Aims/hypothesisResistin is a peptide secreted by adipocytes and recognized as a hormone that could link obesity to insulin resistance. This study was designed to examine the effect and mechanism(s) of insulin on resistin expression in 3T3-L1 adipocytes.MethodsDifferentiated 3T3-L1 adipocytes were stimulated with insulin and resistin mRNA expression was examined by Northern blot analysis. In some experiments, the insulin signal was blocked by several chemical inhibitors or overexpression of a dominant negative form (Δp85) of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase).ResultsInsulin treatment caused a reduction of resistin mRNA in time-dependent and dose-dependent manners in 3T3-L1 adipocytes. Pre-treatment with PD98059, an inhibitor of extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, or SB203580, an inhibitor of p38 mitogen-activated protein-kinase (p38 MAP-kinase) pathway, did not influence insulin-induced reduction of resistin mRNA. Inhibition of PI 3-kinase by LY294002 or Δp85 also failed to block insulin-induced reduction of resistin mRNA. Cycloheximide, a protein synthesis inhibitor, completely blocked insulin-induced reduction of resistin mRNA. Actinomycin D, a RNA synthesis inhibitor, also blocked insulin-induced reduction of resistin mRNA, and the decreasing rate of resistin mRNA in cells treated with insulin alone was faster than that with actinomycin D.Conclusion/interpretationInsulin downregulates resistin mRNA via PI 3-kinase, ERK or p38 MAP-kinase independent pathways in 3T3-L1 adipocytes. The downregulation mechanism of resistin mRNA by insulin would be an indirect event through the synthesis of novel protein(s) that could accelerate the degradation of resistin mRNA.


Diabetes | 2012

Hyperthermia With Mild Electrical Stimulation Protects Pancreatic β-Cells From Cell Stresses and Apoptosis

Tatsuya Kondo; Kazunari Sasaki; Rina Matsuyama; Saori Morino-Koga; Hironori Adachi; Mary Ann Suico; Junji Kawashima; Hiroyuki Motoshima; Noboru Furukawa; Hirofumi Kai; Eiichi Araki

Induction of heat shock protein (HSP) 72 improves metabolic profiles in diabetic model mice. However, its effect on pancreatic β-cells is not known. The current study investigated whether HSP72 induction can reduce β-cell stress signaling and apoptosis and preserve β-cell mass. MIN6 cells and db/db mice were sham-treated or treated with heat shock (HS) and mild electrical stimulation (MES) (HS+MES) to induce HSP72. Several cellular markers, metabolic parameters, and β-cell mass were evaluated. HS+MES treatment or HSP72 overexpression increased HSP72 protein levels and decreased tumor necrosis factor (TNF)-α–induced Jun NH2-terminal kinase (JNK) phosphorylation, endoplasmic reticulum (ER) stress, and proapoptotic signal in MIN6 cells. In db/db mice, HS+MES treatment for 12 weeks significantly improved insulin sensitivity and glucose homeostasis. Upon glucose challenge, a significant increase in insulin secretion was observed in vivo. Compared with sham treatment, levels of HSP72, insulin, pancreatic duodenal homeobox-1, GLUT2, and insulin receptor substrate-2 were upregulated in the pancreatic islets of HS+MES-treated mice, whereas JNK phosphorylation, nuclear translocation of forkhead box class O-1, and nuclear factor-κB p65 were reduced. Apoptotic signals, ER stress, and oxidative stress markers were attenuated. Thus, HSP72 induction by HS+MES treatment protects β-cells from apoptosis by attenuating JNK activation and cell stresses. HS+MES combination therapy may preserve pancreatic β-cell volume to ameliorate glucose homeostasis in diabetes.


Biochemical and Biophysical Research Communications | 2011

Caloric restriction decreases ER stress in liver and adipose tissue in ob/ob mice

Atsuyuki Tsutsumi; Hiroyuki Motoshima; Tatsuya Kondo; Shuji Kawasaki; Takeshi Matsumura; Satoko Hanatani; Motoyuki Igata; Norio Ishii; Hiroyuki Kinoshita; Junji Kawashima; Kayo Taketa; Noboru Furukawa; Kaku Tsuruzoe; Takeshi Nishikawa; Eiichi Araki

Endoplasmic reticulum (ER) stress plays a crucial role in the development of insulin resistance and diabetes. Although caloric restriction (CR) improves obesity-related disorders, the effects of CR on ER stress in obesity remain unknown. To investigate how CR affects ER stress in obesity, ob/ob mice were assigned to either ad libitum (AL) (ob-AL) or CR (ob-CR) feeding (2 g food/day) for 1-4 weeks. The body weight (BW) of ob-CR mice decreased to the level of lean AL-fed littermates (lean-AL) within 2 weeks. BW of lean-AL and ob-CR mice was less than that of ob-AL mice. The ob-CR mice showed improved glucose tolerance and hepatic insulin action compared with ob-AL mice. Levels of ER stress markers such as phosphorylated PKR-like ER kinase (PERK) and eukaryotic translation initiation factor 2α and the mRNA expression of activating transcription factor 4 were significantly higher in the liver and epididymal fat from ob-AL mice compared with lean-AL mice. CR for 2 and 4 weeks significantly reduced all of these markers to less than 35% and 50%, respectively, of the levels in ob-AL mice. CR also significantly reduced the phosphorylation of insulin receptor substrate (IRS)-1 and c-Jun NH(2)-terminal kinase (JNK) in ob/ob mice. The CR-mediated decrease in PERK phosphorylation was similar to that induced by 4-phenyl butyric acid, which reduces ER stress in vivo. In conclusion, CR reduced ER stress and improved hepatic insulin action by suppressing JNK-mediated IRS-1 serine-phosphorylation in ob/ob mice.


American Journal of Physiology-endocrinology and Metabolism | 2010

An acylic polyisoprenoid derivative, geranylgeranylacetone protects against visceral adiposity and insulin resistance in high-fat-fed mice

Hironori Adachi; Tatsuya Kondo; Rei Ogawa; Kazunari Sasaki; Saori Morino-Koga; Michiharu Sakakida; Junji Kawashima; Hiroyuki Motoshima; Noboru Furukawa; Kaku Tsuruzoe; Nobuhiro Miyamura; Hirofumi Kai; Eiichi Araki

Induction of heat shock protein (HSP)72 improves insulin resistance and obesity in diabetic animal models. Geranylgeranylacetone (GGA), known as an antiulcer drug, induces HSP72 and protects organs against several cellular stresses. This study investigated whether GGA administration would induce HSP72 in liver and render physiological protection against high-fat feeding in mice. A single and 4-wk oral administration of 200 mg/kg GGA was performed in high-fat diet (HFD)-fed mice. Metabolic parameters, cytokines, and gene expressions related to insulin signaling were evaluated. A single administration of GGA induced HSP72 in liver of normal chow-fed and HFD-fed mice. Insulin resistance after HFD was slightly ameliorated. Four weeks of GGA administration also increased HSP72 in liver and significantly improved insulin resistance and glucose homeostasis upon glucose challenge. Activation of c-jun NH₂-terminal kinase (JNK) was attenuated, and insulin signaling was improved in the liver of HFD mice. Visceral adiposity was decreased in GGA-treated mice, accompanied by reduced leptin and increased adiponectin levels. GGA can be a novel therapeutic approach to treat metabolic syndrome as well as type 2 diabetes by improving insulin signaling and reducing adiposity. These beneficial effects of GGA could be mediated through HSP72 induction and JNK inactivation in the liver.


Diabetes Research and Clinical Practice | 2000

Bradykinin enhances insulin receptor tyrosine kinase in 32D cells reconstituted with bradykinin and insulin signaling pathways

Hiroyuki Motoshima; Eiichi Araki; Toshihiko Nishiyama; Tetsuya Taguchi; Kengo Kaneko; Yoshiaki Hirashima; Kazuaki Yoshizato; Atsuhisa Shirakami; Koji Sakai; Junji Kawashima; Tetsuya Shirotani; Hideki Kishikawa; Motoaki Shichiri

We have previously shown that bradykinin potentiated insulin-induced glucose uptake through GLUT4 translocation in canine adipocytes and skeletal muscles. The aim of this study was to determine the molecular mechanism of bradykinin enhancement of the insulin signal. For this purpose, 32D cells, which express a limited number of insulin receptors and lack endogenous bradykinin B2 receptor (BK2R) or insulin receptor substrate (IRS)-1 were transfected with BK2R cDNA and/or insulin receptor cDNA and/or IRS-1 cDNA, and analyzed. In 32D cells that expressed BK2R and insulin receptor (32D-BKR/IR), bradykinin alone had no effect on the phosphorylation of the insulin receptor, but it enhanced insulin-stimulated tyrosine phosphorylation of the insulin receptor. In 32D cells that expressed BK2R, insulin receptor and IRS-1 (32D-BKR/IR/IRS1), bradykinin also enhanced insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1. An increase in insulin-stimulated phosphorylation of IRS-1 by treatment with bradykinin in 32D-BKR/IR/IRS1 cell was associated with increased binding of 85 kD subunit of phosphatidylinositol 3 (PI 3)-kinase and increased IRS-1 associated PI 3-kinase activity. These effects of bradykinin were not observed in 32D cells which lack the expression of BK2R (32D-IR/IRS1) or insulin receptor (32D-BKR/IRS1). Furthermore, tyrosine phosphatase activity against insulin receptor beta-subunit in plasma membrane fraction of 32D-BKR/IR cells was significantly reduced by bradykinin, suggesting that the effect of bradykinin was in part mediated by inhibition of protein tyrosine phosphatase(s). Our results clearly demonstrated that bradykinin enhanced insulin-stimulated tyrosine kinase activity of the insulin receptor and downstream insulin signal cascade through the BK2R mediated signal pathway.


Hormone Research in Paediatrics | 2004

Preclinical Cushing's syndrome resulting from black adrenal adenoma. A case report.

Hiroshi Tokunagaa; Nobuhiro Miyamura; Kazunari Sasaki; Kazuaki Yoshizato; Mina Itasaka; Kazuhiko Nakamaru; Mihoshi Suefuji; Junji Kawashima; Kazuya Matsumoto; Hironobu Sasano; Eiichi Araki

A 59-year-old Japanese woman, admitted for the treatment of diabetes mellitus and hypertension, was incidentally discovered to have a solid mass of 1.4 cm in diameter by CT scan with the attenuation value of 38 Hounsfield units, relatively higher for ordinary adrenal adenomas. Magnetic resonance imaging revealed no reduction of signal intensity on opposite-phase image on T1-weighted sequence. Adrenal scintigraphy imaging with 131I-adosterol did not show any uptake of the isotope in the area corresponding to both adrenals. Although she had no characteristic feature of overt Cushing’s syndrome, her serum cortisol level was not suppressed after an overnight dexamethasone administration. She was diagnosed as having preclinical Cushing’s syndrome. Left adrenalectomy was performed, revealing the well-circumscribed black tumor, mainly consisted of compact cell, in which cytoplasm was filled with numerous granules pigmented with dark to golden brown colors on hematoxylin-eosin staining. These findings suggested that her incidentaloma was a black adrenal adenoma. Production of steroid hormones was confirmed by immunohistochemical analysis of steroidogenic enzymes and by measurement of the tissue contents of hormones, whose levels were comparable with those in adenomas of overt Cushing’s syndrome. This is the first case report of preclinical Cushing’s syndrome resulting from black adrenal adenoma.


EBioMedicine | 2014

Mild Electrical Stimulation with Heat Shock Reduces Visceral Adiposity and Improves Metabolic Abnormalities in Subjects with Metabolic Syndrome or Type 2 Diabetes: Randomized Crossover Trials

Tatsuya Kondo; Kaoru Ono; Sayaka Kitano; Rina Matsuyama; Rieko Goto; Mary Ann Suico; Shuji Kawasaki; Motoyuki Igata; Junji Kawashima; Hiroyuki Motoshima; Takeshi Matsumura; Hirofumi Kai; Eiichi Araki

Background The induction of heat shock protein (HSP) 72 by mild electrical stimulation with heat shock (MES + HS), which improves visceral adiposity and insulin resistance in mice, may be beneficial in treating metabolic syndrome (MS) or type 2 diabetes mellitus (T2DM). Methods Using open-label crossover trials, 40 subjects with MS or T2DM were randomly assigned using computer-generated random numbers to 12 weeks of therapeutic MES + HS followed by 12 weeks of no treatment, or vice versa. During the intervention period, physical and biochemical markers were measured. Findings Compared to no treatment, MES + HS treatment was associated with a significant decrease in visceral adiposity (− 7.54 cm2 (− 8.61%), 95% CI − 8.55 to − 6.53 (p = 0.037) in MS, − 19.73 cm2 (− 10.89%), 95% CI − 20.97 to − 18.49 (p = 0.003) in T2DM). Fasting plasma glucose levels were decreased by 3.74 mg/dL (− 5.28%: 95% CI − 4.37 to − 3.09 mg/dL, p = 0.029) in MS and by 14.97 mg/dL (10.40%: 95% CI − 15.79 to 14.15 mg/dL, p < 0.001) in T2DM, and insulin levels were also reduced by 10.39% and 25.93%, respectively. HbA1c levels showed a trend toward reduction (− 0.06%) in MS, and was significantly declined by − 0.43% (95% CI − 0.55 to − 0.31%, p = 0.009) in T2DM. HbA1c level of less than 7.0% was achieved in 52.5% of the MES + HS-treated T2DM patients in contrast to 15% of the non-treated period. Several insulin resistance indices, inflammatory cytokines or adipokines, including C-reactive protein, adiponectin, and tumor necrosis factor-α, were all improved in both groups. In isolated monocytes, HSP72 expression was increased and cytokine expression was reduced following MES + HS treatment. Glucose excursions on meal tolerance test were lower after using MES + HS in T2DM. Interpretation This combination therapy has beneficial impacts on body composition, metabolic abnormalities, and inflammation in subjects with MS or T2DM. Activation of the heat shock response by MES + HS may provide a novel approach for the treatment of lifestyle-related diseases. Funding Funding for this research was provided by MEXT KAKENHI (Grants-in-Aid for Scientific Research from Ministry of Education, Culture, Sports, Science and Technology, Japan).


Journal of Diabetes Investigation | 2012

Ezetimibe improves glucose metabolism by ameliorating hepatic function in Japanese patients with type 2 diabetes

Shinji Ichimori; Seiya Shimoda; Rieko Goto; Yasuto Matsuo; Takako Maeda; Noboru Furukawa; Junji Kawashima; Shoko Kodama; Taiji Sekigami; S. Isami; Kenro Nishida; Eiichi Araki

Aims/Introduction:  Several experimental studies have shown that ezetimibe improves steatosis and insulin resistance in the liver. This suggests that ezetimibe may improve glucose metabolism, as well as lipid metabolism, by inhibiting hepatic lipid accumulation. Therefore, we compared HbA1c levels after 3 months ezetimibe treatment with baseline levels in patients with type 2 diabetes and examined the factors associated with reductions in HbA1c following ezetimibe administration.

Collaboration


Dive into the Junji Kawashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge