Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junji Yuan is active.

Publication


Featured researches published by Junji Yuan.


Global Change Biology | 2015

Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China

Junji Yuan; Weixin Ding; Deyan Liu; Hojeong Kang; Chris Freeman; Jian Xiang; Yongxin Lin

Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.


Applied Microbiology and Biotechnology | 2014

Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands

Deyan Liu; Weixin Ding; Junji Yuan; Jian Xiang; Yongxin Lin

There are large temporal and spatial variations of methane (CH4) emissions from natural wetlands. To understand temporal changes of CH4 production potential (MPP), soil samples were collected from a permanently inundated Carex lasiocarpa marsh and a summer inundated Calamagrostis angustifolia marsh over the period from June to October of 2011. MPP, dissolved organic carbon (DOC) concentration, abundance and community structure of methanogenic archaea were assessed. In the C. lasiocarpa marsh, DOC concentration, MPP and the methanogen population showed similar seasonal variations and maximal values in September. MPP and DOC in the C. angustifolia marsh exhibited seasonal variations and values peaked during August, while the methanogen population decreased with plant growth. Methanogen abundance correlated significantly (P = 0.02) with DOC only for the C. lasiocarpa marsh. During the sampling period, the dominant methanogens were the Methanosaetaceae and Zoige cluster I (ZC-Ι) in the C. angustifolia marsh, and Methanomicrobiales and ZC-Ι in the C. lasiocarpa marsh. MPP correlated significantly (P = 0.04) with DOC and methanogen population in the C. lasiocarpa marsh but only with DOC in the C. angustifolia marsh. Addition of C. lasiocarpa litter enhanced MPP more effectively than addition of C. angustifolia litter, indicating that temporal variation of substrates is controlled by litter deposition in the C. lasiocarpa marsh while living plant matter is more important in the C. angustifolia marsh. This study indicated that there was no apparent shift in the dominant types of methanogen during the growth season in the species-specific freshwater wetlands. Temporal variation of MPP is controlled by substrates and substrate-driven changes in the abundance of methanogenic archaea in the C. lasiocarpa marsh, while MPP depends only on substrate availability derived from root exudates or soil organic matter in the C. angustifolia marsh.


Scientific Reports | 2016

Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

Junji Yuan; Weixin Ding; Deyan Liu; Hojeong Kang; Jian Xiang; Yongxin Lin

Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential.


Applied Microbiology and Biotechnology | 2015

Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands

Yongxin Lin; Deyan Liu; Weixin Ding; Hojeong Kang; Chris Freeman; Junji Yuan; Jian Xiang

There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of 13C-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with 13C. When 13CO2-H2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes.


Science of The Total Environment | 2018

Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field

Tiehu He; Deyan Liu; Junji Yuan; Jiafa Luo; Stuart Lindsey; Nanthi Bolan; Weixin Ding

The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N2O, NO and NH3) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha-1 (CN); N fertilizer at an optimal application rate of 125kgNha-1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha-1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha-1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N2O, NO, and NH3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH3 and N2O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N2O, NO, and NH3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N2O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions.


Frontiers in Microbiology | 2017

Methanogenic Community Was Stable in Two Contrasting Freshwater Marshes Exposed to Elevated Atmospheric CO2

Yongxin Lin; Deyan Liu; Junji Yuan; Guiping Ye; Weixin Ding

The effects of elevated atmospheric CO2 concentration on soil microbial communities have been previously recorded. However, limited information is available regarding the response of methanogenic communities to elevated CO2 in freshwater marshes. Using high-throughput sequencing and real-time quantitative PCR, we compared the abundance and community structure of methanogens in different compartments (bulk soil, rhizosphere soil, and roots) of Calamagrostis angustifolia and Carex lasiocarpa growing marshes under ambient (380 ppm) and elevated CO2 (700 ppm) atmospheres. C. lasiocarpa rhizosphere was a hotspot for potential methane production, based on the 10-fold higher abundance of the mcrA genes per dry weight. The two marshes and their compartments were occupied by different methanogenic communities. In the C. lasiocarpa marsh, archaeal family Methanobacteriaceae, Rice Cluster II, and Methanosaetaceae co-dominated in the bulk soil, while Methanobacteriaceae was the exclusively dominant methanogen in the rhizosphere soil and roots. Families Methanosarcinaceae and Methanocellaceae dominated in the bulk soil of C. angustifolia marsh. Conversely, Methanosarcinaceae and Methanocellaceae together with Methanobacteriaceae dominated in the rhizosphere soil and roots, respectively, in the C. angustifolia marsh. Elevated atmospheric CO2 increased plant photosynthesis and belowground biomass of C. lasiocarpa and C. angustifolia marshes. However, it did not significantly change the abundance (based on mcrA qPCR), diversity, or community structure (based on high-throughput sequencing) of methanogens in any of the compartments, irrespective of plant type. Our findings suggest that the population and species of the dominant methanogens had weak responses to elevated atmospheric CO2. However, minor changes in specific methanogenic taxa occurred under elevated atmospheric CO2. Despite minor changes, methanogenic communities in different compartments of two contrasting freshwater marshes were rather stable under elevated atmospheric CO2.


Applied Microbiology and Biotechnology | 2014

Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh

Junji Yuan; Weixin Ding; Deyan Liu; Jian Xiang; Yongxin Lin


Biogeosciences | 2014

Nitrous oxide emission and nitrogen use efficiency in response to nitrophosphate, N-(n-butyl) thiophosphoric triamide and dicyandiamide of a wheat cultivated soil under sub-humid monsoon conditions

Weixin Ding; Ziqiang Chen; Hui Yu; Jiafa Luo; Gayoung Yoo; Jian Xiang; Huanjun Zhang; Junji Yuan


Journal of Cleaner Production | 2015

Effects of biochar on nitrous oxide and nitric oxide emissions from paddy field during the wheat growth season

Jian Xiang; Deyan Liu; Weixin Ding; Junji Yuan; Yongxin Lin


Soil Biology & Biochemistry | 2017

Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria

Yongxin Lin; Weixin Ding; Deyan Liu; Tiehu He; Gayoung Yoo; Junji Yuan; Zengming Chen; Jianling Fan

Collaboration


Dive into the Junji Yuan's collaboration.

Top Co-Authors

Avatar

Weixin Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Deyan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongxin Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian Xiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiehu He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zengming Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guiping Ye

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge