Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junko Ishijima is active.

Publication


Featured researches published by Junko Ishijima.


Cytogenetic and Genome Research | 2007

Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes.

A. Kawai; Chizuko Nishida-Umehara; Junko Ishijima; Yayoi Tsuda; Hidetoshi Ota; Yoichi Matsuda

Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.


Chromosome Research | 2005

Highly conserved linkage homology between birds and turtles: Bird and turtle chromosomes are precise counterparts of each other

Yoichi Matsuda; Chizuko Nishida-Umehara; Hiroshi Tarui; Asato Kuroiwa; Kazuhiko Yamada; Taku Isobe; Junko Ando; Atushi Fujiwara; Yukako Hirao; Osamu Nishimura; Junko Ishijima; Akiko Hayashi; Toshiyuki Saito; Takahiro Murakami; Yasunori Murakami; Shigeru Kuratani; Kiyokazu Agata

The karyotypes of birds, turtles and snakes are characterized by two distinct chromosomal components, macrochromosomes and microchromosomes. This close karyological relationship between birds and reptiles has long been a topic of speculation among cytogeneticists and evolutionary biologists; however, there is scarcely any evidence for orthology at the molecular level. To define the conserved chromosome synteny among humans, chickens and reptiles and the process of genome evolution in the amniotes, we constructed comparative cytogenetic maps of the Chinese soft-shelled turtle (Pelodiscus sinensis) and the Japanese four-striped rat snake (Elaphe quadrivirgata) using cDNA clones of reptile functional genes. Homology between the turtle and chicken chromosomes is highly conserved, with the six largest chromosomes being almost equivalent to each other. On the other hand, homology to chicken chromosomes is lower in the snake than in the turtle. Turtle chromosome 6q and snake chromosome 2p represent conserved synteny with the chicken Z chromosome. These results suggest that the avian and turtle genomes have been well conserved during the evolution of the Arcosauria. The avian and snake sex Z chromosomes were derived from different autosomes in a common ancestor, indicating that the causative genes of sex determination may be different between birds and snakes.


Chromosome Research | 2007

The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds.

Chizuko Nishida-Umehara; Yayoi Tsuda; Junko Ishijima; Junko Ando; Atushi Fujiwara; Yoichi Matsuda; Darren K. Griffin

Palaeognathous birds (Struthioniformes and Tinamiformes) have morphologically conserved karyotypes and less differentiated ZW sex chromosomes. To delineate interspecific chromosome orthologies in palaeognathous birds we conducted comparative chromosome painting with chicken (Gallus gallus, GGA) chromosome 1–9 and Z chromosome paints (GGA1–9 and GGAZ) for emu, double-wattled cassowary, ostrich, greater rhea, lesser rhea and elegant crested tinamou. All six species showed the same painting patterns: each probe was hybridized to a single pair of chromosomes with the exception that the GGA4 was hybridized to the fourth largest chromosome and a single pair of microchromosomes. The GGAZ was also hybridized to the entire region of the W chromosome, indicating that extensive homology remains between the Z and W chromosomes on the molecular level. Comparative FISH mapping of four Z- and/or W-linked markers, the ACO1/IREBP, ZOV3 and CHD1 genes and the EE0.6 sequence, revealed the presence of a small deletion in the proximal region of the long arm of the W chromosome in greater rhea and lesser rhea. These results suggest that the karyotypes and sex chromosomes of palaeognathous birds are highly conserved not only morphologically, but also at the molecular level; moreover, palaeognathous birds appear to retain the ancestral lineage of avian karyotypes.


Chromosoma | 2009

The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species.

Aya Kawai; Junko Ishijima; Chizuko Nishida; Ayumi Kosaka; Hidetoshi Ota; Sei-ichi Kohno; Yoichi Matsuda

Populations of the gecko lizard Gekko hokouensis (Gekkonidae, Squamata) on Okinawajima Island and a few other islands of the Ryukyu Archipelago, Japan, have the morphologically differentiated sex chromosomes, the acrocentric Z chromosome and the subtelocentric W chromosome, although the continental representative of this species reportedly shows no sex chromosome heteromorphism. To investigate the origin of sex chromosomes and the process of sex chromosomal differentiation in this species, we molecularly cloned the homologues of six chicken Z-linked genes and mapped them to the metaphase chromosomes of the Okinawajima sample. They were all localized to the Z and W chromosomes in the order ACO1/IREBP–RPS6–DMRT1–CHD1–GHR–ATP5A1, indicating that the origin of ZW chromosomes in G. hokouensis is the same as that in the class Aves, but is different from that in the suborder Ophidia. These results suggest that in reptiles the origin of sex chromosomes varies even within such a small clade as the order Squamata, employing a variety of genetic sex determination. ACO1/IREBP, RPS6, and DMRT1 were located on the Z long arm and the W short arm in the same order, suggesting that multiple rearrangements have occurred in this region of the W chromosome, where genetic differentiation between the Z and W chromosomes has been probably caused by the cessation of meiotic recombination.


Chromosoma | 2007

Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds

Yayoi Tsuda; Chizuko Nishida-Umehara; Junko Ishijima; Kazuhiko Yamada; Yoichi Matsuda

To clarify the process of avian sex chromosome differentiation in palaeognathous birds, we performed molecular and cytogenetic characterization of W chromosome-specific repetitive DNA sequences for elegant crested tinamou (Eudromia elegans, Tinamiformes) and constructed comparative cytogenetic maps of the Z and W chromosomes with nine chicken Z-linked gene homologues for E. elegans and ostrich (Struthio camelus, Struthioniformes). A novel family of W-specific repetitive sequences isolated from E. elegans was found to be composed of guanine- and cytosine-rich 293-bp elements that were tandemly arrayed in the genome as satellite DNA. No nucleotide sequence homologies were found for the Struthioniformes and neognathous birds. The comparative cytogenetic maps of the Z and W chromosomes of E. elegans and S. camelus revealed that there are partial deletions in the proximal regions of the W chromosomes in the two species, and the W chromosome is more differentiated in E. elegans than in S. camelus. These results suggest that a deletion firstly occurred in the proximal region close to the centromere of the acrocentric proto-W chromosome and advanced toward the distal region. In E. elegans, the W-specific repeated sequence elements were amplified site-specifically after deletion of a large part of the W chromosome occurred.


PLOS ONE | 2012

Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping

Yoshinobu Uno; Chizuko Nishida; Hiroshi Tarui; Satoshi Ishishita; Chiyo Takagi; Osamu Nishimura; Junko Ishijima; Hidetoshi Ota; Ayumi Kosaka; Kazumi Matsubara; Yasunori Murakami; Shigeru Kuratani; Naoto Ueno; Kiyokazu Agata; Yoichi Matsuda

Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.


Chromosome Research | 2008

Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

Chizuko Nishida; Junko Ishijima; Ayumi Kosaka; Hideyuki Tanabe; Felix A. Habermann; Darren K. Griffin; Yoichi Matsuda

Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1–9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S–28S rRNA genes and telomeric (TTAGGG)n sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae.


Chromosome Research | 2006

cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids

Shigehiro Kuraku; Junko Ishijima; Chizuko Nishida-Umehara; Kiyokazu Agata; Shigeru Kuratani; Yoichi Matsuda

Mammalian and avian genomes comprise several classes of chromosomal segments that vary dramatically in GC-content. Especially in chicken, microchromosomes exhibit a higher GC-content and a higher gene density than macrochromosomes. To understand the evolutionary history of the intra-genome GC heterogeneity in amniotes, it is necessary to examine the equivalence of this GC heterogeneity at the nucleotide level between these animals including reptiles, from which birds diverged. We isolated cDNAs for 39 protein-coding genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, and performed chromosome mapping of 31 genes. The GC-content of exonic third positions (GC3) of P. sinensis genes showed a heterogeneous distribution, and exhibited a significant positive correlation with that of chicken and human orthologs, indicating that the last common ancestor of extant amniotes had already established a GC-compartmentalized genomic structure. Furthermore, chromosome mapping in P. sinensis revealed that microchromosomes tend to contain more GC-rich genes than GC-poor genes, as in chicken. These results illustrate two modes of genome evolution in amniotes: mammals elaborated the genomic configuration in which GC-rich and GC-poor regions coexist in individual chromosomes, whereas sauropsids (reptiles and birds) refined the chromosomal size-dependent GC compartmentalization in which GC-rich genomic fractions tend to be confined to microchromosomes.


Immunogenetics | 2007

Two variable lymphocyte receptor genes of the inshore hagfish are located far apart on the same chromosome

Jun Kasamatsu; Takashi Suzuki; Junko Ishijima; Yoichi Matsuda; Masanori Kasahara

Variable lymphocyte receptors (VLR) generate enormous diversity through assembling highly diverse leucine-rich repeat (LRR) modules and presumably function as antigen receptors in jawless vertebrates. The hagfish, which constitute major extant members of jawless vertebrates along with lampreys, have two VLR genes designated VLRA and VLRB, whereas only a single VLR gene has been identified in the lamprey. In the present study, we show by fluorescence in situ hybridization (FISH) that hagfish VLRA and VLRB are located on the same chromosome, but are far apart from each other. Analysis of available inshore hagfish complementary DNA sequences indicates that VLRA and VLRB do not share a LRR module with an identical nucleotide sequence. Physical separation of VLRA and VLRB is consistent with this observation and indicates that the two VLR genes function as separate units. The FISH protocol developed in this study should be useful for the analysis of the agnathan genome.


Cytogenetic and Genome Research | 2013

Karyotype Reorganization with Conserved Genomic Compartmentalization in Dot-Shaped Microchromosomes in the Japanese Mountain Hawk-Eagle ( Nisaetus nipalensis orientalis , Accipitridae)

Chizuko Nishida; Junko Ishijima; Satoshi Ishishita; Kazuhiko Yamada; Darren K. Griffin; T. Yamazaki; Yoichi Matsuda

The karyotype of the Japanese mountain hawk-eagle (Nisaetus nipalensis orientalis) (2n = 66) consists of a large number of medium-sized and small chromosomes but only 4 pairs of dot-shaped microchromosomes, in contrast to the typical avian karyotype with a small number of macrochromosomes and many indistinguishable microchromosomes. To investigate the drastic karyotype reorganization in this species, we performed a molecular cytogenetic characterization employing chromosome in situ hybridization and molecular cloning of centromeric heterochromatin. Cross-species chromosome painting with chicken chromosome-specific probes 1-9 and Z and a paint pool of 20 microchromosome pairs revealed that the N. n. orientalis karyotype differs from chicken by at least 13 fissions of macrochromosomes and 15 fusions between microchromosomes and between micro- and macrochromosomes. A novel family of satellite DNA sequences (NNO-ApaI) was isolated, consisting of a GC-rich 173-bp repeated sequence element. The NNO-ApaI sequence was localized to the C-positive centromeric heterochromatin of 4 pairs of microchromosomes, which evolved concertedly by homogenization between the microchromosomes. These results suggest that the 4 pairs of dot-shaped microchromosomes have retained their genomic compartmentalization from other middle-sized and small chromosomes.

Collaboration


Dive into the Junko Ishijima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigehiro Kuraku

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge