Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junko Nio-Kobayashi is active.

Publication


Featured researches published by Junko Nio-Kobayashi.


Diabetes | 2009

High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans: Effects of Cold Exposure and Adiposity

Masayuki Saito; Yuko Okamatsu-Ogura; Mami Matsushita; Kumiko Watanabe; Takeshi Yoneshiro; Junko Nio-Kobayashi; Toshihiko Iwanaga; Masao Miyagawa; Toshimitsu Kameya; Kunihiro Nakada; Yuko Kawai; Masayuki Tsujisaki

OBJECTIVE The significant roles of brown adipose tissue (BAT) in the regulation of energy expenditure and adiposity are established in small rodents but have been controversial in humans. The objective is to examine the prevalence of metabolically active BAT in healthy adult humans and to clarify the effects of cold exposure and adiposity. RESEARCH DESIGN AND METHODS In vivo 2-[18F]fluoro-2-deoxyglucose (FDG) uptake into adipose tissue was measured in 56 healthy volunteers (31 male and 25 female subjects) aged 23–65 years by positron emission tomography (PET) combined with X-ray computed tomography (CT). RESULTS When exposed to cold (19°C) for 2 h, 17 of 32 younger subjects (aged 23–35 years) and 2 of 24 elderly subjects (aged 38–65 years) showed a substantial FDG uptake into adipose tissue of the supraclavicular and paraspinal regions, whereas they showed no detectable uptake when kept warm (27°C). Histological examinations confirmed the presence of brown adipocytes in these regions. The cold-activated FDG uptake was increased in winter compared with summer (P < 0.001) and was inversely related to BMI (P < 0.001) and total (P < 0.01) and visceral (P < 0.001) fat areas estimated from CT image at the umbilical level. CONCLUSIONS Our findings, being against the conventional view, indicate the high incidence of metabolically active BAT in adult humans and suggest a role in the control of body temperature and adiposity.


Journal of Histochemistry and Cytochemistry | 2009

Immunohistochemical Localization of Six Galectin Subtypes in the Mouse Digestive Tract

Junko Nio-Kobayashi; Hiromi Takahashi-Iwanaga; Toshihiko Iwanaga

Galectin, an animal lectin that recognizes β-galactoside of glycoconjugates, is abundant in the gut. This IHC study showed the subtype-specific localization of galectin in the mouse digestive tract. Mucosal epithelium showed region/cell-specific localization of each galectin subtype. Gastric mucous cells exhibited intense immunoreactions for galectin-2 and galectin-4/6 with a limited localization of galectin-3 at the surface of the gastric mucosa. Electron microscopically, galectin-3 immunoreactivity coated indigenous bacteria on the gastric surface mucous cells. Epithelial cells in the small intestine showed characteristic localizations of galectin-2 and galectin-4/6 in the cytoplasm of goblet cells and the baso-lateral membrane of enterocytes in association with maturation, respectively. Galectin-3 expressed only at the villus tips was concentrated at the myosin-rich terminal web of fully matured enterocytes. Epithelial cells of the large intestine contained intense immunoreactions for galectin-3 and galectin-4/6 but not for galectin-2. The stratified squamous epithelium of the forestomach was immunoreactive for galectin-3 and galectin-7, but the basal layer lacked galectin-3 immunoreactivity. Outside the epithelium, only galectin-1 was localized in the connective tissue, smooth muscles, and neuronal cell bodies. The subtype-specific localization of galectin suggests its important roles in host-pathogen interaction and epithelial homeostasis such as membrane polarization and trafficking in the gut.


Placenta | 2010

Cellular Expression of the Monocarboxylate Transporter (MCT) Family in the Placenta of Mice

A. Nagai; Kumiko Takebe; Junko Nio-Kobayashi; Hiromi Takahashi-Iwanaga; Toshihiko Iwanaga

Lactate plays an important role as an alternative energy substrate, especially in conditions with a decreased utility of glucose. Proton-coupled monocarboxylate transporters (MCTs) are essential for the transport of lactate, ketone bodies, and other monocarboxylates through the plasma membrane and may contribute to the net transport of lactate through the placental barrier. The present study examined the expression profile and subcellular localization of MCTs in the mouse placenta. An in situ hybridization survey of all MCT subtypes detected intense mRNA expressions of MCT1, MCT4, and MCT9 as well as GLUT1 in the placenta from gestational day 11.5. The expression of MCT mRNAs decreased in the intensity at the end of gestation in contrast to a consistently intense expression of GLUT1 mRNA. Immunohistochemically, MCT1 and MCT4 showed a polarized localization on the maternal side and fetal side of the two cell-layered syncytiotrophoblast, respectively. The membrane-oriented localization of MCTs was supported by the coexistence of CD147 which recruits MCT to the plasma membrane. However, the subcellular arrangement of MCT1 and MCT4 along the trophoblastic cell membrane was completely opposite of that in the human placenta. Although we cannot exactly explain the reversed localization of MCTs between human and murine placentas, it may be related to differences between humans and mice in the origin of lactate and its utilization by fetuses.


Histochemistry and Cell Biology | 2008

Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney

Haruko Yanase; Kumiko Takebe; Junko Nio-Kobayashi; Hiromi Takahashi-Iwanaga; Toshihiko Iwanaga

Expression analysis of transporters selective for monocarboxylates such as lactate and ketone bodies in the kidney contributes to understanding the renal energy metabolism. Distribution and expression intensity of a sodium-dependent monocarboxylate transporter (SMCT) and proton-coupled monocarboxylate transporters (MCT) were examined in the mouse kidney. In situ hybridization survey detected significant mRNA expressions of SMCT and MCT-1, 2, 5, 8, 9, 10, and 12. Among these, signals for SMCT, MCT2 and MCT8 were predominant; transcripts of SMCT were restricted to the cortex and the outer stripe of outer medulla, while those of MCT2 and MCT8 gathered in the inner stripe of outer medulla and the cortex, respectively. Immunohistochemically, SMCT was present at the brush border in S2 and S3 of proximal tubules, suggesting the active uptake of luminal monocarboxylates here. MCT1 and MCT2 immunoreactivities were respectively found baso-laterally in S1 and thick ascending limbs of Henle’s loop. The cellular localization of transporters suggests the involvement of SMCT in the uptake of filtrated lactate and ketone bodies and that of MCTs in the transport of monocarboxylate metabolites between tubular cells and circulation, but the different distribution patterns do not support the notion of a functional linkage between SMCT and MCT1/MCT2.


Experimental Biology and Medicine | 2011

Possible involvement of uncoupling protein 1 in appetite control by leptin.

Yuko Okamatsu-Ogura; Junko Nio-Kobayashi; Toshihiko Iwanaga; Akira Terao; Kazuhiro Kimura; Masayuki Saito

Leptin reduces body fat by decreasing food intake and increasing energy expenditure. Uncoupling protein (UCP) 1, a key molecule for brown adipose tissue (BAT) thermogenesis, was reported to contribute to the stimulatory effect of leptin on energy expenditure. To clarify whether UCP1 is also involved in the anorexigenic effect of leptin, in this study we examined the effect of leptin on food intake using wild-type (WT) and UCP1-deficient (UCP1-KO) mice. Repeated injection of leptin decreased food intake more markedly in WT mice than in UCP1-KO mice, while a single injection of leptin showed similar effects in the two groups of mice. As chronic leptin stimulation induces UCP1 expression in BAT and ectopically in white adipose tissue (WAT), we mimicked the UCP1 induction by repeated injection of CL316,243 (CL), a highly specific β3-adrenoceptor agonist, and measured food intake in response to a single injection of leptin. Two-week treatment with CL enhanced the anorexigenic effect of leptin in WT mice, but not in UCP1-KO mice. Three-day treatment with CL in WT mice also enhanced the anorexigenic effect of leptin and leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in the arcuate nucleus of the hypothalamus, without any notable change in adiposity. These results indicate that UCP1 enhances leptin action at the hypothalamus level, suggesting UCP1 contributes to the control of energy balance not only through the regulation of energy expenditure but also through appetite control by modulating leptin action.


Endocrinology | 2015

Bone Morphogenetic Proteins Are Mediators of Luteolysis in the Human Corpus Luteum

Junko Nio-Kobayashi; Jennifer Trendell; Sevasti Giakoumelou; Lyndsey Boswell; Linda Nicol; Masataka Kudo; Noriaki Sakuragi; Toshihiko Iwanaga; W.C. Duncan

Bone morphogenetic proteins (BMPs), members of the transforming growth factor β (TGFβ) superfamily, play important roles in folliculogenesis in various species; however, little is known about their role in luteal function. In this study, we investigated the expression, regulation, and effects of BMP2, BMP4, and BMP6 in carefully dated human corpora lutea and cultured human luteinized granulosa cells. The mRNA abundance of BMPs was increased in the regressing corpus luteum in vivo (P<.01-.001). Human chorionic gonadotropin (hCG) down-regulated BMP2, BMP4, and BMP6 transcripts both in vivo (P=.05-.001) and in vitro (P<.001), and decreased the mRNA abundance of BMP receptors (BMPR1A, BMPR1B, BMPR2; P<.05-.01) in vitro. Three BMPs were regulated by differential signaling pathways. H89, a protein kinase A inhibitor, increased the expression of both BMP2 (P<.05) and BMP4 (P<.05) while decreasing BMP6 (P<.01). PMA, a protein kinase C activator, decreased both BMP4 and BMP6 expression (P<.0001) while enhancing the mRNA abundance of BMP2 (P<.01). BMPs significantly down-regulated transcripts for LH/choriogonadotropin receptor (LHCGR; P<.001) and steroidogenic acute regulatory protein (STAR; P<.001), whereas up-regulating those of follicular stimulating hormone receptor (FSHR; P<.01) and aromatase (CYP19A1; P<.05-.01) in vitro, possessing an effect opposite to hCG but similar to Activin A. Like Activin A, BMP4 and BMP6 stimulated the expression of Inhibin/Activin subunits with a marked effect on INHBB expression (P<.05-.01). These data confirm that BMPs are increased during luteal regression and negatively regulated by hCG via differential mechanisms, suggesting that BMPs are one of the mediators of luteolysis in women.


Histochemistry and Cell Biology | 2011

Cellular expression of monocarboxylate transporters in the female reproductive organ of mice: implications for the genital lactate shuttle.

Takuya Kuchiiwa; Junko Nio-Kobayashi; Hiromi Takahashi-Iwanaga; Takaji Yajima; Toshihiko Iwanaga

The present study examined the cellular localization of monocarboxylate transporters (MCTs), glucose transporters (GLUTs), and some glycolysis-related molecules in the murine female genital tract to demonstrate existence of lactate/pyruvate-dependent energy systems. MCT1, a major MCT subtype, was localized selectively in the ovarian granulosa, oviductal-ciliated cells, and vaginal epithelium; all localizations were associated with intense expressions of glycolytic enzymes. MCT1 was localized in the cell membrane of granulosa cells, including fine processes extending from cumulus cells toward oocytes. The cumulus cells and oocytes showed intense signals for lactate dehydrogenase (LDH)-A and -B, respectively. The basolateral membrane of oviductal-ciliated cells expressed MCT4 as well as MCT1, while adjacent non-ciliated cells contained an intense immunoreactivity for aldolase-C, a glycolytic enzyme. The expression of GLUTs in the ovary was generally weak with an intense expression of GLUT1 only in some vascular endothelia. The oviductal epithelium expressed GLUT1 and GLUT3, respectively, in the basolateral and apical membrane of non-ciliated cells. In the vagina, the basal layers of epithelium were immunolabeled for MCT1 with the entire length of cell membrane, and expressed abundantly both GLUT1 and LDH-A. The findings correspond well with the rich existence of lactate in the genital fluids and strongly suggest the active transport of lactate/pyruvate in the female reproductive tract, which provides favorable conditions for oocytes, sperms, and zygotes.


Journal of Histochemistry and Cytochemistry | 2010

Differential Cellular Localization of Galectin-1 and Galectin-3 in the Regressing Corpus Luteum of Mice and Their Possible Contribution to Luteal Cell Elimination

Junko Nio-Kobayashi; Toshihiko Iwanaga

Galectin-1 and galectin-3, β-galactoside–binding lectins, are predominantly expressed in the regressing corpus luteum (CL) of mouse ovary. This study revealed the expression patterns and cellular localizations of galectins during CL formation and regression by ISH and IHC. Galectin-1 mRNA expression temporarily increased in active CL, preceding the expression of progesterone degradation enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD), which represents functional luteolysis. The expressions of both galectin-1 and galectin-3 remarkably increased in the structurally regressing CL, which vigorously expressed 20α-HSD and contained abundant apoptotic luteal cells. Ultrastructurally, galectin-1– and galectin-3–immunoreactive cells were identified as fibroblasts and infiltrating macrophages, respectively. In addition, some populations of luteal cells themselves expressed galectin-3 in regressing CL and formed unique demarcation membranes in the cytoplasm, showing a non-typical apoptotic feature. Ovary of adult mice with repeated estrus cycles contained CL of three different generations. Among them, the old CL formed during previous estrus cycles consisted of galectin-3–positive luteal cells. The galectin-3–positive old CL was resistant to apoptosis and seemed to be eliminated by a mechanism different from apoptosis. The stage- and cell-specific expression of galectin in CL suggests its differential contribution to luteolysis, and this expression may be mediated by major regulatory molecules of CL function, prolactin and/or prostaglandin F2α.


PLOS ONE | 2014

The Association between Smoking and Ectopic Pregnancy: Why Nicotine Is BAD for Your Fallopian Tube

Andrew W. Horne; Jeremy K. Brown; Junko Nio-Kobayashi; Hazirah B. Z. Abidin; Zety E. H. A. Adin; Lyndsey Boswell; Stewart T. G. Burgess; Kai-Fai Lee; W. Colin Duncan

Epidemiological studies have shown that cigarette smoking is a major risk factor for tubal ectopic pregnancy but the reason for this remains unclear. Here, we set out to determine the effect of smoking on Fallopian tube gene expression. An oviductal epithelial cell line (OE-E6/E7) and explants of human Fallopian tubes from non-pregnant women (n = 6) were exposed to physiologically relevant concentrations of cotinine, the principle metabolite of nicotine, and changes in gene expression analyzed using the Illumina Human HT-12 array. Cotinine sensitive genes identified through this process were then localized and quantified in Fallopian tube biopsies from non-pregnant smokers (n = 10) and non-smokers (n = 11) using immunohistochemistry and TaqMan RT-PCR. The principle cotinine induced change in gene expression detected by the array analysis in both explants and the cell line was significant down regulation (P<0.05) of the pro-apoptotic gene BAD. We therefore assessed the effect of smoking on cell turnover in retrospectively collected human samples. Consistent with the array data, smoking was associated with decreased levels of BAD transcript (P<0.01) and increased levels of BCL2 transcript (P<0.05) in Fallopian tube biopsies. BAD and BCL2 specific immunolabelling was localized to Fallopian tube epithelium. Although no other significant differences in levels of apoptosis or cell cycle associated proteins were observed, smoking was associated with significant changes in the morphology of the Fallopian tube epithelium (P<0.05). These results suggest that smoking may alter tubal epithelial cell turnover and is associated with structural, as well as functional, changes that may contribute to the development of ectopic pregnancy.


Anatomical Science International | 2017

Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease

Junko Nio-Kobayashi

Fifteen galectins, β-galactose-binding animal lectins, are known to be distributed throughout the body. We herein summarize current knowledge on the tissue- and cell-specific localization of galectins and their potential functions in health and disease. Galectin-3 is widely distributed in epithelia, including the simple columnar epithelium in the gut, stratified squamous epithelium in the gut and skin, and transitional epithelium and several regions in nephrons in the urinary tract. Galectin-2 and galectin-4/6 are gut-specific, while galectin-7 is found in the stratified squamous epithelium in the gut and skin. The reproductive tract mainly contains galectin-1 and galectin-3, and their expression markedly changes during the estrous/menstrual cycle. The galectin subtype expressed in the corpus luteum (CL) changes in association with luteal function. The CL of women and cows displays a “galectin switch” with coordinated changes in the major galectin subtype and its ligand glycoconjugate structure. Macrophages express galectin-3, which may be involved in phagocytotic activity. Lymphoid tissues contain galectin-3-positive macrophages, which are not always stained with the macrophage marker, F4/80. Subsets of neurons in the brain and dorsal root ganglion express galectin-1 and galectin-3, which may contribute to the regeneration of damaged axons, stem cell differentiation, and pain control. The subtype-specific contribution of galectins to implantation, fibrosis, and diabetes are also discussed. The function of galectins may differ depending on the tissues or cells in which they act. The ligand glycoconjugate structures mediated by glycosyltransferases including MGAT5, ST6GAL1, and C2GnT are important for revealing the functions of galectins in healthy and disease states.

Collaboration


Dive into the Junko Nio-Kobayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge