Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junko Tomida is active.

Publication


Featured researches published by Junko Tomida.


Frontiers in Microbiology | 2014

Responses of Pseudomonas aeruginosa to antimicrobials

Yuji Morita; Junko Tomida; Yoshiaki Kawamura

Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful clues for the improvement and optimization of chemotherapy in order to appropriately treat pseudomonal infections while minimizing the emergence of resistance.


Frontiers in Microbiology | 2012

MexXY multidrug efflux system of Pseudomonas aeruginosa

Yuji Morita; Junko Tomida; Yoshiaki Kawamura

Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.


Journal of Clinical Microbiology | 2012

Identification of and Screening for Human Helicobacter cinaedi Infections and Carriers via Nested PCR

Kohta Oyama; Shahzada Khan; Tatsuya Okamoto; Shigemoto Fujii; Katsuhiko Ono; Tetsuro Matsunaga; Jun Yoshitake; Tomohiro Sawa; Junko Tomida; Yoshiaki Kawamura; Takaaki Akaike

ABSTRACT Helicobacter cinaedi is the most frequently reported enterohepatic Helicobacter species isolated from humans. Earlier research suggested that certain patients with H. cinaedi infection may remain undiagnosed or incorrectly diagnosed because of difficulties in detecting the bacteria by conventional culture methods. Here, we report a nested PCR assay that rapidly detects the cytolethal distending toxin gene (cdt) of H. cinaedi with high specificity and sensitivity. Specificity of the assay was validated by using different species of Helicobacter and Campylobacter, as well as known H. cinaedi-positive and -negative samples. The sensitivity of detection for the cdt gene in the assay was 102 CFU/ml urine or 102 CFU/105 infected RAW 264.7 cells. In an H. cinaedi-infected mouse model, the cdt gene of H. cinaedi was effectively detected via the assay with urine (6/7), stool (2/3), and blood (2/6) samples. Importantly, it detected H. cinaedi in blood, urine, and stool samples from one patient with a suspected H. cinaedi infection and three patients with known infections. The assay was further used clinically to follow up two H. cinaedi-infected patients after antibiotic treatment. Stool samples from these two patients evaluated by nested PCR after antibiotic therapy showed clearance of bacterial DNA. Finally, analysis of stool specimens from healthy volunteers showed occasional positive reactions (4/30) to H. cinaedi DNA, which suggests intestinal colonization by H. cinaedi in healthy subjects. In conclusion, this nested PCR assay may be useful for the rapid diagnosis, antimicrobial treatment evaluation, and epidemiological study of H. cinaedi infection.


International Journal of Systematic and Evolutionary Microbiology | 2013

Leptospira idonii sp. nov., isolated from environmental water.

Mitsumasa Saito; Sharon Y. A. M. Villanueva; Yoshiaki Kawamura; Ken-ichiro Iida; Junko Tomida; Takaaki Kanemaru; Eri Kohno; Satoshi Miyahara; Akiko Umeda; Kazunobu Amako; Nina G. Gloriani; Shin-ichi Yoshida

Strain Eri-1(T) was isolated from a water sample on the campus of Kyushu University, Fukuoka, Japan. The motility and morphology of the isolate were similar to those of members of the genus Leptospira, but the spiral structure of the isolate was sharper under dark-field microscopy. Cells were 10.6 ± 1.3 µm long and 0.2 µm in diameter, with a wavelength of 0.9 µm and an amplitude of 0.4 µm. Strain Eri-1(T) grew in Korthofs medium at both 13 and 30 °C, and also in the presence of 8-azaguanine. 16S rRNA gene-based phylogenetic analysis placed strain Eri-1(T) within the radiation of the genus Leptospira where it formed a unique lineage within the clade of the known saprophytic species of the genus Leptospira. The strain was not pathogenic to hamsters. Strain Eri-1(T) exhibited low levels (11.2-12.6 %) of similarity by DNA-DNA hybridization to the three most closely related species of the genus Leptospira. The DNA G+C content of the genome of strain Eri-1(T) was 42.5 ± 0.1 mol%. These results suggest that strain Eri-1(T) represents a novel species of the genus Leptospira, for which the name Leptospira idonii sp. nov. is proposed. The type strain is Eri-1(T) ( = DSM 26084(T) = JCM 18486(T)).


Journal of Bacteriology | 2012

Complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia.

Takatsugu Goto; Yoshitoshi Ogura; Hideki Hirakawa; Junko Tomida; Yuji Morita; Takaaki Akaike; Tetsuya Hayashi; Yoshiaki Kawamura

We report the complete genome sequence of Helicobacter cinaedi strain PAGU611, isolated in a case of human bacteremia. The PAGU611 genome comprises a 2,078,348-bp chromosome and a 23,054-bp plasmid. The chromosome contains a unique genomic island, encoding a type VI secretion system and clustered regularly interspaced short palindromic repeat (CRISPR) loci.


Frontiers in Microbiology | 2015

Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon

Yuji Morita; Junko Tomida; Yoshiaki Kawamura

The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.


Journal of Microbiological Methods | 2010

Application of an inducible system to engineer unmarked conditional mutants of essential genes of Pseudomonas aeruginosa

Yuji Morita; Shin-ichiro Narita; Junko Tomida; Hajime Tokuda; Yoshiaki Kawamura

The Phi CTX-based integration vector pYM101 harboring a tightly controlled modified phage T7 early gene promoter/LacI(q) repressor (T7/LacI) system was constructed for the generation of unmarked conditional mutants in Pseudomonas aeruginosa. Promoter activity of the T7/LacI system was demonstrated to be dependent on the presence of the inducer isopropyl -beta-D-1-thiogalactopyranoside (IPTG), as evaluated by measuring beta-galactosidase activity. In the absence of the inducer, the promoter was silent as its activity was lower than those of a promoter-less lacZ control. Unmarked conditional mutants of four predicted essential genes (lolCDE (PA2988-86), lpxC (PA4406), rho (PA5239), and def (PA0019)) were successfully constructed using this recombination system. In the absence of IPTG, the growth of all mutants was repressed; however, the addition of either 0.1 or 1mM IPTG restored growth rates to levels nearly identical to wild-type cells. It was therefore demonstrated that the inducible integration vector pYM101 is suitable for the creation of unmarked conditional mutants of P. aeruginosa, and is particularly useful for examining the function of essential genes.


Microbiology and Immunology | 2012

Genus Enhydrobacter Staley et al. 1987 should be recognized as a member of the family Rhodospirillaceae within the class Alphaproteobacteria

Yoshiaki Kawamura; Nagatoshi Fujiwara; Takashi Naka; Asako Mitani; Hiromi Kubota; Junko Tomida; Yuji Morita; Jun Hitomi

The genus Enhydrobacter, first reported as a member of the family Vibrionaceae, has been placed in the family Moraxellaceae, but as a genus incertae sedis in Bergeys Manual of Systematic Bacteriology 2nd edition. During our taxonomic investigation of Enhydrobacter‐like organisms, we observed that the 16S rRNA sequences of E.   aerosaccus‐type strain versions NCIMB 12535T, ATCC 27094 T and CCUG 58314T were very different from the accessible data (accession no. AJ550856). Phylogenetic analysis of our 16S rRNA sequence data revealed that these organisms were located within the family Rhodospirillaceae. The genera Inquilinus, Oceanibaculum, Skermanella and Nisaea were closely related (sequence similarities were 88.3∼87.0%), but Enhydrobacter could be distinguished from these genera by growth characteristics, fatty acid profiles (C19:0 cyclo ω8c; 38.4% C18:1ω7c; 32.2%, and C16:0; 8.9% were major components), in being non‐flagellated, and differing in enzymatic activities, including trypsin and β‐glucosidase. From these data, we conclude that the genus Enhydrobacter should be recognized as an independent genus of the family Rhodospirillaceae within the class Alphaproteobacteria.


Frontiers in Microbiology | 2016

Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa.

Yuji Morita; Ken-ichi Nakashima; Kunihiko Nishino; Kenta Kotani; Junko Tomida; Makoto Inoue; Yoshiaki Kawamura

The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important.


Systematic and Applied Microbiology | 2015

Porphyromonas pogonae sp. nov., an anaerobic but low concentration oxygen adapted coccobacillus isolated from lizards (Pogona vitticeps) or human clinical specimens, and emended description of the genus Porphyromonas Shah and Collins 1988.

Yoshiaki Kawamura; Saki Kuwabara; Stephen A. Kania; Hisayuki Kato; Manami Hamagishi; Nagatoshi Fujiwara; Takuichi Sato; Junko Tomida; Kaori Tanaka; David A. Bemis

During the process of identifying a Gram-negative coccobacillus isolated from a human clinical specimen, we found that the isolates 16S rRNA gene had very close sequence identity with that of a variant Porphyromonas isolated from polymicrobial infections in the central bearded dragon, a species of lizard [2]. The 16S rRNA gene sequences of the human isolate and of six isolates from lizards were nearly identical (99.9-100%). Phylogenetic analysis placed all of these isolates in a single phylogenetic cluster well separated from other species in the genus Porphyromonas. The closest species was Porphyromonas catoniae with 90.7-90.9% sequence identity, although there was less than 6% DNA similarity between the P. catoniae type strain and our representative isolates from lizards (PAGU 1787(T)) and human (PAGU 1776). These isolates could grow under anaerobic or microaerobic conditions (6% O2 atmosphere). The isolates were positive for catalase and very strong β-hemolytic activity, but did not show black or brown pigmentation. Biochemically, the isolates could be differentiated from closely related species by pyroglutamic acid arylamidase and glycine arylamidase activity, and some others. The fermentation products mainly included succinic acid and propionic acid. The major fatty acids detected in cells of the isolates were iso-C15:0, anteiso-C15:0, and 3OH-iso-C17:0. The G+C content was 43.0 ± 0.62 mol%. The species name Porphyromonas pogonae sp. nov. is proposed for these isolates with the type strain of PAGU 1787(T) (=MI 10-1288(T)=JCM 19732(T)=ATCC BAA-2643(T)).

Collaboration


Dive into the Junko Tomida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuji Morita

Aichi Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken-ichi Nakashima

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Makoto Inoue

Aichi Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Hirai

Aichi Gakuin University

View shared research outputs
Researchain Logo
Decentralizing Knowledge