Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junkui Ai is active.

Publication


Featured researches published by Junkui Ai.


Molecular Endocrinology | 2009

HDAC6 Regulates Androgen Receptor Hypersensitivity and Nuclear Localization via Modulating Hsp90 Acetylation in Castration-Resistant Prostate Cancer

Junkui Ai; Yujuan Wang; Javid A. Dar; June Liu; Lingqi Liu; Joel B. Nelson; Zhou Wang

The development of castration-resistant prostate cancer (PCa) requires that under castration conditions, the androgen receptor (AR) remains active and thus nuclear. Heat shock protein 90 (Hsp90) plays a key role in androgen-induced and -independent nuclear localization and activation of AR. Histone deacetylase 6 (HDAC6) is implicated, but has not been proven, in regulating AR activity via modulating Hsp90 acetylation. Here, we report that knockdown of HDAC6 in C4-2 cells using short hairpin RNA impaired ligand-independent nuclear localization of endogenous AR and inhibited PSA expression and cell growth in the absence or presence of dihydrotestosterone (DHT). The dose-response curve of DHT-stimulated C4-2 colony formation was shifted by shHDAC6 such that approximately 10-fold higher concentration of DHT is required, indicating a requirement for HDAC6 in AR hypersensitivity. HDAC6 knockdown also inhibited C4-2 xenograft tumor establishment in castrated, but not in testes-intact, nude mice. Studies using HDAC6-deficient mouse embryonic fibroblasts cells showed that inhibition of AR nuclear localization by HDAC6 knockdown can be largely alleviated by expressing a deacetylation mimic Hsp90 mutant. Taken together, our studies suggest that HDAC6 regulates AR hypersensitivity and nuclear localization, mainly via modulating HSP90 acetylation. Targeting HDAC6 alone or in combination with other therapeutic approaches is a promising new strategy for prevention and/or treatment of castration-resistant PCa.


Cancer Research | 2009

U19/Eaf2 Binds to and Stabilizes von Hippel-Lindau Protein

Wuhan Xiao; Junkui Ai; Geoffrey M. Habermacher; Olga V. Volpert; Ximing J. Yang; Ai Yuan Zhang; Junghyun Hahn; Xiaoyan Cai; Zhou Wang

Studies have firmly established a key regulatory role for the tumor suppressor pVHL in the regulation of the vascular system and normal spermatogenesis. Here, we report that knockout of the newly identified tumor suppressor U19/Eaf2 also caused vascular system abnormalities and aspermatogenesis, suggesting a potential link between U19/Eaf2 and pVHL. Coimmunoprecipitation and in vitro binding assays showed an association between U19/Eaf2 and pVHL, whereas deletion mutagenesis revealed the requirement of the NH(2) terminus of U19/Eaf2 and both the alpha and beta domains of pVHL for this binding. U19/Eaf2 stabilizes pVHL, as shown by protein stability and pulse-chase studies. Testes and mouse embryonic fibroblasts (MEF) derived from U19/Eaf2 knockout mice expressed reduced levels of pVHL, indicating that full in vivo expression of pVHL indeed requires U19/Eaf2. As expected, U19/Eaf2 knockout MEF cells exhibited an increased level and activity of hypoxia-inducible factor 1alpha (HIF1alpha), a protein typically regulated via a pVHL-mediated degradation pathway. Furthermore, angiogenesis in a Matrigel plug assay was significantly increased in U19/Eaf2 knockout mice. The above observations argue that U19/Eaf2 can modulate HIF1alpha and angiogenesis, possibly via direct binding and stabilization of pVHL.


The Prostate | 2012

Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance.

Katherine O'Malley; Gabrielle A. Langmann; Junkui Ai; Raquel Ramos-Garcia; Robert L. Vessella; Zhou Wang

Advanced prostate cancer is currently treated with androgen deprivation therapy (ADT). ADT initially results in tumor regression; however, all patients eventually relapse with castration‐resistant prostate cancer. New approaches to delay the progression of prostate cancer to castration resistance are in desperate need. This study addresses whether targeting Heat shock protein 90 (HSP90) regulation of androgen receptor (AR) can inhibit prostate cancer progression to castration resistance.


Endocrinology | 2012

Nuclear Export Signal of Androgen Receptor (NESAR) Regulation of Androgen Receptor Level in Human Prostate Cell Lines via Ubiquitination and Proteasome-Dependent Degradation

Yanqing Gong; Dan Wang; Javid A. Dar; Prabhpreet Singh; Lara Graham; Weijun Liu; Junkui Ai; Zhongcheng Xin; Yinglu Guo; Zhou Wang

Androgen receptor (AR) plays a key role in prostate development and carcinogenesis. Increased expression and/or stability of AR is associated with sensitization of prostate cancer cells to low levels of androgens, leading to castration resistance. Hence, understanding the mechanisms regulating AR protein stability is clinically relevant and may lead to new approaches to prevent and/or treat prostate cancer. Using fluorescence microscopy, Western blot, and pulse chase assay, we showed that nuclear export signal (NES)(AR), a nuclear export signal in the ligand binding domain (LBD) of AR, can significantly enhance the degradation of fusion protein constructs in PC3 prostate cancer cells. The half-life of GFP-NES(AR) was less than 3 h, which was 10 times shorter than that of green fluorescent protein (GFP) control. Further analysis showed that NES(AR) can signal for polyubiquitination and that degradation of NES(AR)-containing fusion proteins can be blocked by proteasome inhibitor MG132. Ubiquitination of GFP-AR or GFP-LBD was suppressed in the presence of dihydrotestosterone, which is known to suppress NES(AR) while inducing nuclear localization signal 2 in AR or LBD, suggesting that the export activity of NES(AR) is required for NES(AR)-mediated polyubiquitination. Treatment with MG132 also induced aggresome formation of NES(AR)-containing fusion proteins in perinuclear regions of the transfected PC3 cells, indicating a role for NES(AR) in inducing unfolded protein responses. The above observations suggest that NES(AR) plays a key role in AR ubiquitination and proteasome-dependent degradation in prostate cancer cells.


Cancer Microenvironment | 2011

Differential Inductive Signaling of CD90+ Prostate Cancer-Associated Fibroblasts Compared to Normal Tissue Stromal Mesenchyme Cells

Laura E. Pascal; Junkui Ai; Ricardo Z. N. Vêncio; Eneida F. Vêncio; Yong Zhou; Laura S. Page; Lawrence D. True; Zhou Wang; Alvin Y. Liu

Prostate carcinomas are surrounded by a layer of stromal fibroblastic cells that are characterized by increased expression of CD90. These CD90+ cancer-associated stromal fibroblastic cells differ in gene expression from their normal counterpart, CD49a+CD90lo stromal smooth muscle cells; and were postulated to represent a less differentiated cell type with altered inductive properties. CD90+ stromal cells were isolated from tumor tissue specimens and co-cultured with the pluripotent embryonal carcinoma cell line NCCIT in order to elucidate the impact of tumor-associated stroma on stem cells, and the ‘cancer stem cell.’ Transcriptome analysis identified a notable decreased induction of smooth muscle and prostate stromal genes such as PENK, BMP2 and ChGn compared to previously determined NCCIT response to normal prostate stromal cell induction. CD90+ stromal cell secreted factors induced an increased expression of CD90 and differential induction of genes involved in extracellular matrix remodeling and the RECK pathway in NCCIT. These results suggest that, compared to normal tissue stromal cells, signaling from cancer-associated stromal cells has a markedly different effect on stem cells as represented by NCCIT. Given that stromal cells are important in directing organ-specific differentiation, stromal cells in tumors appear to be defective in this function, which may contribute to abnormal differentiation found in diseases such as cancer.


Angiogenesis | 2011

EAF2 loss enhances angiogenic effects of Von Hippel-Lindau heterozygosity on the murine liver and prostate

Laura E. Pascal; Junkui Ai; Lora H. Rigatti; Anne K. Lipton; Wuhan Xiao; James R. Gnarra; Zhou Wang

Von Hippel-Lindau (VHL) disease results from the inactivation of the VHL gene and is characterized by highly vascular tumors. A consequence of VHL loss is the stabilization of hypoxia-inducible factor (HIF) alpha subunits and increased expression of HIF target genes, which include pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF). In mice, homozygous deletion of VHL is embryonic lethal due to vascular abnormalities in the placenta; and, VHL+/− mice develop proliferative vascular lesions in several major organs, most prominently the liver. Loss of ELL-associated factor (EAF2) in murine models has also been shown to induce increased vascular density in the liver as well as the prostate. Previously, EAF2 was determined to be a binding partner of VHL and loss of EAF2 induced a reduction in pVHL levels and an increase in hypoxia induced factor 1α (HIF1α) levels in vitro. Here we characterized the cooperative effects of VHL- and EAF2-deficiency on angiogenesis in the liver and prostate of male mice. VHL deficiency consistently increased the incidence of hepatic vascular lesions across three mouse strains. These vascular lesions where characterized by an increase in microvessel density, and staining intensity of VHL target proteins HIF1α and VEGF. EAF2−/−VHL+/− mice had increased incidence of proliferative hepatic vascular lesions (4/4) compared to VHL+/− (10/18) and EAF2−/− (0/5) mice. Prostates of EAF2−/−VHL+/− mice also displayed an increase in microvessel density, as well as stromal inflammation and prostatic intraepithelial neoplasia. These results suggest that cooperation of VHL and EAF2 may be critical for angiogenic regulation of the liver and prostate, and concurrent loss of these two tumor suppressors may result in a pro-angiogenic phenotype.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

N-terminal domain of the androgen receptor contains a region that can promote cytoplasmic localization

Javid A. Dar; Kurtis Eisermann; Khalid Z. Masoodi; Junkui Ai; Dan Wang; Tyler Severance; Sharanya D. Sampath-Kumar; Zhou Wang

Nucleocytoplasmic trafficking of the androgen receptor (AR) represents an essential step in androgen action. To determine whether the amino-terminal domain (NTD) contains potential nuclear import and/or export signals, deletion mutants of the NTD tagged with green fluorescent protein (GFP) were generated and tested for their intracellular localization in both AR-negative and AR-positive cell lines. Subcellular localization analysis suggested a role of the NTD in regulating AR subcellular localization and revealed that the region of a.a. 50-250 of the NTD of AR (AR(50-250)) could promote cytoplasmic localization. Leptomycin B inhibited the activity of AR(50-250), suggesting that AR(50-250) export is mediated through exportin 1, either directly or indirectly. These observations argue for an important role of the NTD in regulating AR nucleocytoplasmic trafficking and will facilitate further investigation of interactions among different signals in regulating AR nucleocytoplasmic trafficking, which may lead to new approaches to inhibit AR nuclear localization.


PLOS ONE | 2013

Development of a Reactive Stroma Associated with Prostatic Intraepithelial Neoplasia in EAF2 Deficient Mice

Laura E. Pascal; Junkui Ai; Khalid Z. Masoodi; Yujuan Wang; Dan Wang; Kurtis Eisermann; Lora H. Rigatti; Katherine J. O’Malley; Hei M. Ma; Xinhui Wang; Javid A. Dar; Anil V. Parwani; Brian W. Simons; Michael Ittman; Luyuan Li; Benjamin J. Davies; Zhou Wang

ELL-associated factor 2 (EAF2) is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2−/− mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2−/− mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2−/− animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors.


The Prostate | 2010

ELL is an HIF-1α partner that regulates and responds to hypoxia response in PC3 cells

Lingqi Liu; Junkui Ai; Wuhan Xiao; June Liu; Yujuan Wang; Dianqi Xin; Zhisong He; Yinglu Guo; Zhou Wang

Eleven–nineteen lysine‐rich leukemia (ELL) plays an important role in tumorigenesis and animal development. HIF‐1 is a transcriptional factor that functions as a master regulator of O2 homeostasis. Our previous studies showed that a binding partner of ELL, U19/Eaf2, can modulate HIF‐1α activity and hypoxia response, suggesting that ELL may also influence HIF‐1α pathway and hypoxia response.


Assay and Drug Development Technologies | 2016

Development and Implementation of a High-Throughput High-Content Screening Assay to Identify Inhibitors of Androgen Receptor Nuclear Localization in Castration-Resistant Prostate Cancer Cells

Paul A. Johnston; Minh M. Nguyen; Javid A. Dar; Junkui Ai; Yujuan Wang; Khalid Z. Masoodi; Tongying Shun; Sunita Shinde; Daniel P. Camarco; Yun Hua; Donna M. Huryn; Gabriela Mustata Wilson; John S. Lazo; Joel B. Nelson; Peter Wipf; Zhou Wang

Patients with castration-resistant prostate cancer (CRPC) can be treated with abiraterone, a potent inhibitor of androgen synthesis, or enzalutamide, a second-generation androgen receptor (AR) antagonist, both targeting AR signaling. However, most patients relapse after several months of therapy and a majority of patients with relapsed CRPC tumors express the AR target gene prostate-specific antigen (PSA), suggesting that AR signaling is reactivated and can be targeted again to inhibit the relapsed tumors. Novel small molecules capable of inhibiting AR function may lead to urgently needed therapies for patients resistant to abiraterone, enzalutamide, and/or other previously approved antiandrogen therapies. Here, we describe a high-throughput high-content screening (HCS) campaign to identify small-molecule inhibitors of AR nuclear localization in the C4-2 CRPC cell line stably transfected with GFP-AR-GFP (2GFP-AR). The implementation of this HCS assay to screen a National Institutes of Health library of 219,055 compounds led to the discovery of 3 small molecules capable of inhibiting AR nuclear localization and function in C4-2 cells, demonstrating the feasibility of using this cell-based phenotypic assay to identify small molecules targeting the subcellular localization of AR. Furthermore, the three hit compounds provide opportunities to develop novel AR drugs with potential for therapeutic intervention in CRPC patients who have relapsed after treatment with antiandrogens, such as abiraterone and/or enzalutamide.

Collaboration


Dive into the Junkui Ai's collaboration.

Top Co-Authors

Avatar

Zhou Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel B. Nelson

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Javid A. Dar

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Dan Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yujuan Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wuhan Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge