Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junmin Qian is active.

Publication


Featured researches published by Junmin Qian.


Journal of Materials Science: Materials in Medicine | 2008

Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite.

Junmin Qian; Yahong Kang; Wei Zhang; Zhe Li

Biomorphous, highly porous hydroxyapatite (HA) ceramics have been prepared by a combination of a novel biotemplating process and a sol–gel method, using natural plants like cane and pine as biotemplates. A HA sol was first synthesized from triethylphosphate and calcium nitrate used as the phosphorus and calcium precursors, respectively, and infiltrated into the biotemplates, and subsequently they were sintered at elevated temperatures to obtain porous HA ceramics. The microstructural changes, phase and chemical composition evolutions during the biotemplate-to-HA conversion were investigated by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy. The XRD and FT-IR analysis revealed that the dominant phase of the product was HA, which contained a small amount of mixed A/B-type carbonated HA, closely resembling that of human bone apatite. Moreover, the appearance of a small amount of secondary phase CaCO3 seemed unavoidable. The HA was not transformed to the other calcium phosphate phases up to 1400°C, but it contained a trace amount of CaO when sintered at above 1100°C. The possible transformation mechanism was proposed. The SEM observation and mechanical property test showed that as-produced HA ceramics retained the macro-/micro-porous structures of the biotemplates with high precision, and possessed acceptable mechanical strength, which is suggested to be potential scaffolds for bone tissue engineering.


Carbohydrate Polymers | 2013

Reduction/pH dual-sensitive PEGylated hyaluronan nanoparticles for targeted doxorubicin delivery.

Minghui Xu; Junmin Qian; Aili Suo; Hongjie Wang; Xueqing Yong; Xuefeng Liu; Rongrong Liu

To minimize the side effect of chemotherapy, a novel reduction/pH dual-sensitive drug nanocarrier, based on PEGylated dithiodipropionate dihydrazide (TPH)-modified hyaluronic acid (PEG-SS-HA copolymer), was developed for targeted delivery of doxorubicin (DOX) to hepatocellular carcinoma. The copolymer was synthesized by reductive amination via Schiffs base formation between TPH-modified HA and galactosamine-conjugated poly(ethylene glycol) aldehyde/methoxy poly(ethylene glycol) aldehyde. Conjugation of DOX to PEG-SS-HA copolymer was accomplished through the hydrazone linkage formed between DOX and PEG-SS-HA, and confirmed by FTIR and (1)H NMR spectra. The polymer-DOX conjugate could self-assemble into spherical nanoparticles (~150 nm), as indicated by TEM and DLS. In vitro release studies showed that the DOX-loaded nanoparticles could release DOX rapidly under the intracellular levels of pH and glutathiose. Cellular uptake experiments demonstrated that the nanoparticles could be efficiently internalized by HepG2 cells. These results indicate that the PEG-SS-HA copolymer holds great potential for targeted intracellular delivery of DOX.


Materials Science and Engineering: C | 2013

Preparation and characterization of bimodal porous poly(γ-benzyl-L-glutamate) scaffolds for bone tissue engineering

Junmin Qian; Xueqing Yong; Weijun Xu; Xinxia Jin

An ideal scaffold in bone tissue-engineering strategy should provide biomimetic extracellular matrix-like architecture and biological properties. Poly(γ-benzyl-L-glutamate) (PBLG) has been a popular model polypeptide for various potential biomedical applications due to its good biocompatibility and biodegradability. This study developed novel bimodal porous PBLG polypeptide scaffolds via a combination of biotemplating method and in situ ring-opening polymerization of γ-benzyl-L-gIutamate N-carboxyanhydride (BLG-NCA). The PBLG scaffolds were characterized by proton nuclear magnetic resonance spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscope (SEM) and mechanical test. The results showed that the semi-crystalline PBLG scaffolds exhibited an anisotropic porous structure composed of honeycomb-like channels (100-200 μm in diameter) and micropores (5-20 μm), with a very high porosity of 97.4±1.6%. The compressive modulus and glass transition temperature were 402.8±20.6 kPa and 20.2°C, respectively. The in vitro biocompatibility evaluation with MC3T3-E1 cells using SEM, fluorescent staining and MTT assay revealed that the PBLG scaffolds had good biocompatibility and favored cell attachment, spread and proliferation. Therefore, the bimodal porous polypeptide scaffolds are promising for bone tissue engineering.


Materials Science and Engineering: C | 2014

Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.

Junmin Qian; Weijun Xu; Xueqing Yong; Xinxia Jin; Wei Zhang

In this study, biomorphic poly(dl-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/nHA) composite scaffolds were successfully prepared using cane as a template. The porous morphology, phase, compression characteristics and in vitro biocompatibility of the PLGA/nHA composite scaffolds and biomorphic PLGA scaffolds as control were investigated. The results showed that the biomorphic scaffolds preserved the original honeycomb-like architecture of cane and exhibited a bimodal porous structure. The average channel diameter and micropore size of the PLGA/nHA composite scaffolds were 164 ± 52 μm and 13 ± 8 μm, respectively, with a porosity of 89.3 ± 1.4%. The incorporation of nHA into PLGA decreased the degree of crystallinity of PLGA, and significantly improved the compressive modulus of biomorphic scaffolds. The in vitro biocompatibility evaluation with MC3T3-E1 cells demonstrated that the biomorphic PLGA/nHA composite scaffolds could better support cell attachment, proliferation and differentiation than the biomorphic PLGA scaffolds. The localization depth of MC3T3-E1 cells within the channels of the biomorphic PLGA/nHA composite scaffolds could reach approximately 400 μm. The results suggested that the biomorphic PLGA/nHA composite scaffolds were promising candidates for bone tissue engineering.


International Journal of Nanomedicine | 2010

Galactosylated poly(ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization

Aili Suo; Junmin Qian; Yu Yao; Wanggang Zhang

Biodegradable galactosylated methoxy poly(ethylene glycol)/poly(l-lactide-co-β-malic acid) (Gal-PEG-b-PLMA) block copolymer micelles were successfully prepared by a solvent diffusion method, and could efficiently encapsulate doxorubicin. The Gal-PEG-b-PLMA micelles before and after doxorubicin loading were characterized by size, morphology, in vitro drug release, and in vitro cytotoxicity in HepG2 cells. Transmission electron microscopy and dynamic light scattering results showed that the empty and doxorubicin-loaded micelles were approximately spherical in shape and had mean sizes of about 72 nm and 85 nm, respectively. In vitro release behavior of doxorubicin from the micelles was pH-dependent, with obviously faster release rates at mildly acidic pH 4.5 and 5.5 compared with physiologic pH 7.4. Methylthiazoletetrazolium assay and flow cytometric analysis indicated that the doxorubicin-loaded galactosylated micelles exhibited a greater growth-inhibitory effect on HepG2 cells than the nongalactosylated doxorubicin-loaded micelles, and induced S phase cell cycle arrest. Confocal laser scanning microscope observations revealed that the galactosylated micelles could be efficiently internalized by HepG2 cells through receptor-mediated endocytosis. The results suggest that Gal-PEG-b-PLMA copolymer micelles are a promising carrier system for targeted drug delivery in cancer therapy.


Materials Science and Engineering: C | 2016

Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells.

Aili Suo; Junmin Qian; Yaping Zhang; Rongrong Liu; Weijun Xu; Hejing Wang

A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiffs base formation. The chemical structures of the copolymers were identified by (1)H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π-π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material.


Journal of Materials Chemistry B | 2015

Co-delivery of doxorubicin and P-glycoprotein siRNA by multifunctional triblock copolymers for enhanced anticancer efficacy in breast cancer cells

Minghui Xu; Junmin Qian; Aili Suo; Ning Cui; Yu Yao; Weijun Xu; Ting Liu; Hongjie Wang

Combined treatment of chemotherapeutics and small interfering RNAs (siRNAs) is a promising therapy strategy for breast carcinoma via their synergetic effects. In this study, to improve the therapeutic effect of doxorubicin (DOX), novel triblock copolymers, folate/methoxy-poly(ethylene glycol)-block-poly(l-glutamate-hydrazide)-block-poly(N,N-dimethylaminopropyl methacrylamide) (FA/m-PEG-b-P(LG-Hyd)-b-PDMAPMA), were synthesized and used as a vehicle for the co-delivery of DOX and P-glycoprotein (P-gp) siRNA into breast cancer cells. The triblock copolymers were synthesized by a combination of ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride using cystamine-terminated heterotelechelic PEG derivatives possessing folate or methoxy end groups (FA/m-PEG-Cys) as initiators and reversible addition-fragmentation chain transfer polymerization of N,N-dimethylaminopropyl methacrylamide followed by hydrazinolysis. The successful synthesis of the copolymers was confirmed by 1H NMR and gel permeation chromatography. DOX was covalently conjugated onto the poly(l-glutamate-hydrazide) blocks via a pH-labile hydrazone linkage, and the DOX-conjugated triblock copolymers could self-assemble into nanoparticles in aqueous solutions. P-glycoprotein (P-gp) siRNA was then bound to the cationic poly(N,N-dimethylaminopropyl methacrylamide) (PDMAPMA) blocks through an electrostatic interaction, resulting in the formation of spherical nanocomplexes with an average diameter of 196.8 nm and a zeta potential of +28.3 mV. The in vitro release behaviors of DOX and siRNA from the nanocomplexes were pH- and reduction-dependent, and the release rates were much faster under a reductive acidic condition (pH 5.0, glutathione: 10 mM) simulating the intracellular endo-lysosomal environment of cancer cells compared to physiological conditions. The fast payload release rates were closely related to both the glutathione-triggered detachment of PEG blocks from the nanocomplex surface and the pH-sensitive cleavage of hydrazone linkages. FA-decorated nanocomplexes showed higher cellular uptake efficiency and cytotoxicity against MCF-7 cells than FA-free nanocomplexes, as confirmed by confocal laser scanning microscopy, transmission electron microscopy, MTT and flow cytometry analyses. Our results demonstrated that the multifunctional triblock copolymer-mediated co-delivery of DOX and P-gp siRNA might be a new promising therapeutic strategy for breast cancer treatment.


Acta Biomaterialia | 2016

A double-network poly(Nɛ-acryloyl l-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment

Weijun Xu; Junmin Qian; Yaping Zhang; Aili Suo; Ning Cui; Jinlei Wang; Yu Yao; Hejing Wang

UNLABELLED To mimic the structure of breast tumor microenvironment, novel double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid (pLysAAm/HA) hydrogels were fabricated by a two-step photo-polymerization process for in vitro three-dimensional (3D) cell culture. The morphology, mechanical properties, swelling and degradation behaviors of pLysAAm/HA hydrogels were investigated. The growth behavior and function of MCF-7 cells cultured on the hydrogels and standard 2D culture plates were compared. The results showed that pLysAAm/HA hydrogels had a highly porous microstructure with a double network and that their mechanical properties, swelling ratio and degradation rate depended on the degree of methacrylation of HA. The results of in vitro studies revealed that the pLysAAm/HA hydrogels could support MCF-7 cell adhesion, promote cell proliferation, and induce the diversification of cell morphologies and overexpression of VEGF, IL-8 and bFGF. The MCF-7 cells cultured on 3D hydrogels showed significantly increased migration and invasion abilities as compared to 2D-cultured cells. Preliminary in vivo results confirmed that the 3D culture of MCF-7 cells resulted in greater tumorigenesis than their 2D culture. These results indicate that the pLysAAm/HA hydrogels can provide a 3D microenvironment for MCF-7 cells that is more representative of the in vivo breast cancer. STATEMENT OF SIGNIFICANCE Traditional 2D cell cultures cannot ideally represent their in vivo physiological conditions. In this work, we reported a method for preparing double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid hydrogel, and demonstrated its suitability for use in mimicing breast tumor microenvironment. Results showed the prepared hydrogels had controllable mechanical properties, swelling ratio and degradation rate. The MCF-7 cells cultured in hydrogels expressed much higher levels of pro-angiogenic growth factors and displayed significantly enhanced migration and invasion abilities. The tumorigenic capability of MCF-7 cells pre-cultured in 3D hydrogels was enhanced significantly. Therefore, the novel hydrogel may provide a more physiologically relevant 3D in vitro model for breast cancer research. To our knowledge, this is the first report assessing a HA-based double-network hydrogel used as a tumor model.


Journal of Biomedical Materials Research Part A | 2014

Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering

Junmin Qian; Aili Suo; Xinxia Jin; Weijun Xu; Minghui Xu

In bone tissue engineering, a qualified scaffold should provide a three-dimensional porous structure mimicking the extracellular matrix of bone except good biological properties. In this study, biomorphic silk fibroin (SF) scaffolds were fabricated from cane by an innovative biotemplating-negative mold process. The physicochemical properties, in vitro enzymatic degradation behavior and biocompatibility of the biomorphic SF scaffolds were investigated. The results showed that the scaffolds well inherited the original porous morphology of cane, and possessed good mechanical stability. The scaffolds had a compressive modulus of 1.56 ± 0.08 MPa and a porosity of 82.73%, and exhibited a bimodal pore size distribution (15 and 172 μm). The degradation ratio of the SF scaffolds increased with prolonging degradation time and reached 29% within 21 days when exposed to 1.0 U/mL collagenase IA. The in vitro cytocompatibility evaluation indicated that the scaffolds could support cell attachment, proliferation, and osteogenic differentiation of osteoblast-like MC3T3-E1 cells, as assessed by SEM, fluorescent staining, MTT, and ALP activity assays. The results indicated the potential of biomorphic SF scaffolds for bone tissue engineering.


Carbohydrate Polymers | 2017

Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering

Yaping Wang; Junmin Qian; Na Zhao; Ting Liu; Weijun Xu; Aili Suo

Hydrogels fabricated from natural polysaccharides may serve as ideal scaffolds for tissue engineering because of their similarity to the extracellular matrices. In this study, novel hydrogel scaffolds with bubble-like porous structure were prepared from hydroxyethyl chitosan (HECS) and cellulose (CEL) by a combination of chemical crosslinking, particle-leaching using silicon dioxide particles as porogen and freeze-drying method. The morphology, compression stress-strain curves, wettability, and swelling and rheological behaviors of the HECS/CEL scaffolds were characterized by SEM, mechanical test, contact angle measurement and rheometer. HECS/CEL scaffolds had good comprehensive performances and could reach equilibrium swelling state in water within 20s. The results from in vitro biocompatibility evaluated using SEM, live/dead cell viability and MTT assays demonstrated that the HECS/CEL scaffolds could well support the attachment, spreading and proliferation of osteoblastic MC3T3-E1 cells and showed good biocompatibility. Therefore, the novel HECS/CEL scaffolds may be promising for bone tissue engineering applications.

Collaboration


Dive into the Junmin Qian's collaboration.

Top Co-Authors

Avatar

Weijun Xu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Aili Suo

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Hongjie Wang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Minghui Xu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Jinlei Wang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Ning Cui

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Yu Yao

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Ting Liu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Yaping Wang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Xinxia Jin

Xi'an Jiaotong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge