Junmin Zhou
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junmin Zhou.
Journal of Clinical Investigation | 2013
Xianghong Chen; Erika A. Eksioglu; Junmin Zhou; Ling Zhang; Julie Y. Djeu; Nicole Fortenbery; Pearlie K. Epling-Burnette; Sandra van Bijnen; Harry Dolstra; John P. Cannon; Je-In Youn; Sarah S. Donatelli; Dahui Qin; Theo de Witte; Jianguo Tao; Huaquan Wang; Pingyan Cheng; Dmitry I. Gabrilovich; Alan F. List; Sheng Wei
Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Sarah S. Donatelli; Junmin Zhou; Danielle L. Gilvary; Erika A. Eksioglu; Xianghong Chen; W. Douglas Cress; Eric B. Haura; Matthew B. Schabath; Domenico Coppola; Sheng Wei; Julie Y. Djeu
Significance Natural killer (NK) cells are potent tumor-cell killers, but exposure to transforming growth factor beta-1 (TGF-β) abrogates their effectiveness. Here, we show that this suppression is a result of TGF-β induction of microRNA (miR)-183, which binds and represses DNAX activating protein 12 kDa (DAP12), a signal adaptor for lytic function in NK cells. Because introduction of miR-183 alone or its functional blockade in the presence of TGF-β reduced or restored DAP12 levels in NK cells, we define miR-183 as a key factor in TGF-β–mediated immunosuppression. Since DAP12 is required for signaling through multiple NK cytotoxicity receptors and TGF-β is overexpressed by diverse solid malignancies, our data may have significant importance in the development of NK-based cancer immunotherapies. Transforming growth factor β1 (TGF-β), enriched in the tumor microenvironment and broadly immunosuppressive, inhibits natural killer (NK) cell function by yet-unknown mechanisms. Here we show that TGF-β–treated human NK cells exhibit reduced tumor cytolysis and abrogated perforin polarization to the immune synapse. This result was accompanied by loss of surface expression of activating killer Ig-like receptor 2DS4 and NKp44, despite intact cytoplasmic stores of these receptors. Instead, TGF-β depleted DNAX activating protein 12 kDa (DAP12), which is critical for surface NK receptor stabilization and downstream signal transduction. Mechanistic analysis revealed that TGF-β induced microRNA (miR)-183 to repress DAP12 transcription/translation. This pathway was confirmed with luciferase reporter constructs bearing the DAP12 3′ untranslated region as well as in human NK cells by use of sense and antisense miR-183. Moreover, we documented reduced DAP12 expression in tumor-associated NK cells in lung cancer patients, illustrating this pathway to be consistently perturbed in the human tumor microenvironment.
Molecular Cancer Therapeutics | 2007
David Sallman; Xianghong Chen; Bin Zhong; Danielle L. Gilvary; Junmin Zhou; Sheng Wei; Julie Y. Djeu
One of the major obstacles in curing prostate cancer is the development of drug resistance to docetaxel, which is the gold standard for the treatment of this disease. It is not only imperative to discover the molecular basis of resistance but also to find therapeutic agents that can disrupt the resistant pathways. Based on initial findings that docetaxel-resistant PC3-DR and DU145-DR prostate tumor cell lines express tumor necrosis factor–related apoptosis inducing ligand (TRAIL) receptors, we examined whether TRAIL could be used as an alternative method to kill PC3-DR and DU145-DR cells. However, these tumor cells were found to be TRAIL resistant. Because PC3-DR and DU-145-DR cells were previously shown by us to be clusterin positive, we examined if clusterin could play a role in TRAIL resistance. We found that resveratrol could sensitize docetaxel-resistant tumor cells to TRAIL, and it worked by blocking clusterin expression. In particular, small interfering RNA clusterin expression in the cell lines was sufficient to produce apoptosis by TRAIL. Further analysis indicated that resveratrol functions as an effective tyrosine kinase inhibitor, similar to its analogue, piceatannol, and could inhibit Src and Jak kinases, thus resulting in loss of Stat1 activation. We have shown earlier that Stat1 is essential for gene transcription of clusterin. These results, taken together, show that resveratrol could be a useful new therapeutic agent to combat docetaxel resistance. [Mol Cancer Ther 2007;6(11):2938–47]
Hiv Medicine | 2005
Junmin Zhou; N Kumarasamy
HIV disease progression has been well documented in Western populations. This study aimed to estimate the short‐term risk of AIDS and death from the TREAT Asia HIV Observational Database (TAHOD), a prospective, multicentre cohort study in Asia and the Pacific region.
Blood | 2008
Pearlie K. Epling-Burnette; Lubomir Sokol; Xianhong Chen; Fanqi Bai; Junmin Zhou; Michelle A. Blaskovich; JianXiang Zou; Jeffrey S. Painter; Todd D. Edwards; Lynn C. Moscinski; Jeffrey A. Yoder; Julie Y. Djeu; Said M. Sebti; Thomas P. Loughran; Sheng Wei
Large granular lymphocyte (LGL) leukemia is commonly associated with poor hematopoiesis. The first case of pulmonary artery hypertension (PAH) was observed in a 57-year-old woman with natural killer (NK)-LGL leukemia and transfusion-dependent anemia. Using a genetic approach, we demonstrated that killing of pulmonary endothelial cells by patient NK cells was mediated by dysregulated balance in activating and inhibitory NK-receptor signaling. Elevated pulmonary artery pressure and erythroid differentiation improved after disrupting the NK-receptor signaling pathway with 4 courses of a farnesyltransferase inhibitor, tipifarnib. Coincidental association between PAH and LGL leukemia suggest a causal relationship between the expanded lymphocyte population and these clinical manifestations. This trial is registered at www.ClinicalTrials.gov as NCI 6823.
Blood | 2009
Xianhong Chen; Fanqi Bai; Lubomir Sokol; Junmin Zhou; Ren A; Jeffrey S. Painter; Jinhong Liu; David Sallman; Chen Ya; Jeffrey A. Yoder; Julie Y. Djeu; Thomas P. Loughran; P.K. Epling-Burnette; Sheng Wei
Large granular lymphocyte (LGL) leukemia, or LGLL, is characterized by increased numbers of circulating clonal LGL cells in association with neutropenia, anemia, rheumatoid arthritis, and pulmonary artery hypertension (PAH). Emerging evidence suggests that LGLL cells with a CD8(+)CD28(null) phenotype induce these clinical manifestations through direct destruction of normal tissue. Compared with CD8(+)CD28(null) T cells from healthy controls, CD8(+)CD28(null) T cells from LGLL patients have acquired the ability to directly lyse pulmonary artery endothelial cells and human synovial cells. Here, we show that LGLL cells from patients possess enhanced cytotoxic characteristics and express elevated levels of activating natural killer receptors as well as their signaling partners, DAP10 and DAP12. Moreover, downstream targets of DAP10 and DAP12 are constitutively activated in LGLL cells, and expression of dominant-negative DAP10 and DAP12 dramatically reduces their lytic capacity. These are the first results to show that activating NKR-ligand interactions play a critical role in initiating the DAP10 and DAP12 signaling events that lead to enhanced lytic potential of LGLL cells. Results shown suggest that inhibitors of DAP10 and DAP12 or other proteins involved in this signaling pathway will be attractive therapeutic targets for the treatment of LGLL and other autoimmune diseases and syndromes.
Immunogenetics | 2007
Sheng Wei; Junmin Zhou; Xinghong Chen; Radhika N. Shah; Jinhong Liu; Timothy M. Orcutt; David Traver; Julie Y. Djeu; Gary W. Litman; Jeffrey A. Yoder
Both inhibitory and activating forms of natural killer (NK) cell receptors are found in mammals. The activating receptors play a direct role in the recognition of virally infected or transformed cells and transduce activating signals into the cell by partnering with an adaptor protein, which contains a cytoplasmic activation motif. Activating NK receptors encoded by the mammalian leukocyte receptor complex (e.g., killer cell immunoglobulin-like receptors) and the natural killer complex (e.g., Ly49s) partner with the adaptor protein DAP12, whereas NK receptors encoded in the CD94/NKG2 complex partner with the adaptor protein DAP10. Novel immune-type receptors (NITRs) found in bony fish share several common features with immunoglobulin-type NK receptors. Nitr9 is a putative activating receptor in zebrafish that induces cytotoxicity within the context of human NK cells. One isoform of Nitr9, Nitr9L, is shown here to preferentially partner with a zebrafish ortholog of Dap12. Cross-linking the Nitr9L–Dap12 complex results in activation of the phosphytidylinositol 3-kinase→AKT→extracellular signal-regulated kinase pathway suggesting that the DAP12-based activating pathway is conserved between bony fish and mammals.
Hiv Medicine | 2010
Rebecca Oyomopito; Man Po Lee; Praphan Phanuphak; Poh Lian Lim; Rossana Ditangco; Junmin Zhou; Thira Sirisanthana; Yi-Ming Arthur Chen; Sanjay Pujari; N. Kumarasamy; Somnuek Sungkanuparph; Christopher Kc Lee; Adeeba Kamarulzaman; Shinichi Oka; Fujie Zhang; C. V. Mean; Tuti Parwati Merati; Goa Tau; Jeffery J. Smith; Patrick Ck Li
Surrogate markers of HIV disease progression are HIV RNA in plasma viral load (VL) and CD4 cell count (immune function). Despite improved international access to antiretrovirals, surrogate marker diagnostics are not routinely available in resource‐limited settings. Therefore, the objective was to assess effects of economic and diagnostic resourcing on patient treatment outcomes.
Hiv Medicine | 2009
Junmin Zhou; Pck C. K. Li; Nagalingeswaran Kumarasamy; Mark A. Boyd; Yma M. A. Chen; Thira Sirisanthana; Somnuek Sungkanuparph; Shinichi Oka; Goa Tau; Praphan Phanuphak; Vonthanak Saphonn; Fj J. Zhang; Sfs F. S. Omar; Ckc K. C. Lee; Rossana Ditangco; Tp P. Merati; Pl L. Lim; Jy Choi; Mg G. Law; Sanjay Pujari
Objective The aim of the study was to examine the rates and predictors of treatment modification following combination antiretroviral therapy (cART) failure in Asian patients with HIV enrolled in the TREAT Asia HIV Observational Database (TAHOD).
Scientific Reports | 2015
Junmin Zhou; Xianghong Chen; Danielle L. Gilvary; Melba Marie Tejera; Erika A. Eksioglu; Sheng Wei; Julie Y. Djeu
Development of chemoresistance, especially to docetaxel (DTX), is the primary barrier to the cure of castration-resistant prostate cancer but its mechanism is obscure. Here, we report a seminal crosstalk between dying and residual live tumor cells during treatment with DTX that can result in outgrowth of a chemoresistant population. Survival was due to the induction of secretory/cytoplasmic clusterin (sCLU), which is a potent anti-apoptotic protein known to bind and sequester Bax from mitochondria, to prevent caspase 3 activation. sCLU induction in live cells depended on HMGB1 release from dying cells. Supernatants from DTX-treated DU145 tumor cells, which were shown to contain HMGB1, effectively induced sCLU from newly-plated DU145 tumor cells and protected them from DTX toxicity. Addition of anti-HMBG1 to the supernatant or pretreatment of newly-plated DU145 tumor cells with anti-TLR4 or anti-RAGE markedly abrogated sCLU induction and protective effect of the supernatant. Mechanistically, HMGB1 activated NFκB to promote sCLU gene expression and prevented the translocation of activated Bax to mitochondria to block cell death. Importantly, multiple currently-used chemotherapeutic drugs could release HMGB1 from tumor cells. These results suggest that acquisition of chemoresistance may involve the HMGB1/TLR4-RAGE/sCLU pathway triggered by dying cells to provide survival advantage to remnant live tumor cells.