Junqiang Ge
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junqiang Ge.
Astrophysical Journal Supplement Series | 2012
Junqiang Ge; Chen Hu; Jian-Min Wang; J. M. Bai; Shu Zhang
Recently, much attention has been paid to double-peaked narrow emission-line (NEL) galaxies, some of which are suggested to be related to merging galaxies. We make a systematic search to build the largest sample of these sources from Data Release 7 of the Sloan Digital Sky Survey (SDSS). With reasonable criteria for fluxes, FWHMs of the emission lines, and separations of the peaks, we select 3030 double-peaked NEL galaxies. In light of the existence of broad Balmer lines and the locations of the two components of double-peaked NELs distinguished by the Kauffmann et al. criteria in the Baldwin-Phillips-Terlevich diagram, we find that there are 81 Type I active galactic nuclei (AGNs), 837 double Type II AGNs (2-Type II), 708 galaxies with double star-forming components (2-SF), 400 with mixed star-forming and Type II AGN components (Type II + SF), and 1004 unknown-type objects. As a by-product, a sample of galaxies (12,582) with asymmetric or top-flat profiles of emission lines is established. After visually inspecting the SDSS images of the two samples, we find 54 galaxies with dual cores. The present samples can be used to study the dynamics of merging galaxies, the triggering mechanism of black hole activity, the hierarchical growth of galaxies, and the dynamics of narrow line regions driven by outflows and a rotating disk.
Monthly Notices of the Royal Astronomical Society | 2017
Zheng Zheng; Huiyuan Wang; Junqiang Ge; Shude Mao; Cheng Li; Ran Li; H. J. Mo; Daniel Goddard; Kevin Bundy; Hongyu Li; P. Nair; Lihwai Lin; R. J. Long; Rogério Riffel; Daniel Thomas; Karen L. Masters; Dmitry Bizyaev; Joel R. Brownstein; Kai Zhang; David R. Law; Niv Drory; Alexandre Roman Lopes; O. V. Malanushenko
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV-r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV-r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
The Astrophysical Journal | 2017
Hongyu Li; Junqiang Ge; Shude Mao; Michele Cappellari; R. J. Long; Ran Li; Eric Emsellem; Aaron A. Dutton; Cheng Li; Kevin Bundy; Daniel Thomas; Niv Drory; Alexandre Roman Lopes
We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis (SPS) and from JAM, we find a similar systematic variation of the initial mass function (IMF) as in the earlier
The Astrophysical Journal | 2011
Jian-Min Wang; Junqiang Ge; Chen Hu; J. A. Baldwin; Yan-Rong Li; Gary J. Ferland; Fei Xiang; C. T. Yan; Shu Zhang
\rm ATLAS^{3D}
The Astrophysical Journal | 2012
Jian-Min Wang; Pu Du; J. A. Baldwin; Junqiang Ge; Chen Hu; Gary J. Ferland
results. Early type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF while galaxies with higher velocity dispersions are consistent with a more bottom heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and find that the trends from our results becomes stronger after considering the gradients.
Monthly Notices of the Royal Astronomical Society | 2014
Pu Du; Jian-Min Wang; Chen Hu; David Valls-Gabaud; J. A. Baldwin; Junqiang Ge; Suijian Xue
It has been suggested that the high metallicity generally observed in active galactic nuclei (AGNs) and quasars originates from ongoing star formation in the self-gravitating part of accretion disks around supermassive black holes (SMBHs). We designate this region as the star-forming (SF) disk, in which metals are produced from supernova explosions (SNexp) while at the same time inflows are driven by SNexp-excited turbulent viscosity to accrete onto the SMBHs. In this paper, an equation of metallicity governed by SNexp and radial advection is established to describe the metal distribution and evolution in the SF disk. We find that the metal abundance is enriched at different rates at different positions in the disk, and that a metallicity gradient is set up that evolves for steady-state AGNs. Metallicity as an integrated physical parameter can be used as a probe of the SF disk age during one episode of SMBH activity. In the SF disk, evaporation of molecular clouds heated by SNexp blast waves unavoidably forms hot gas. This heating is eventually balanced by the cooling of the hot gas, but we show that the hot gas will escape from the SF disk before being cooled, and diffuse into the broad-line regions (BLRs) forming with a typical rate of ~1 M ☉ yr–1. The diffusion of hot gas from an SF disk depends on ongoing star formation, leading to the metallicity gradients in BLR observed in AGNs. We discuss this and other observable consequences of this scenario.
The Astrophysical Journal | 2018
Jenny E. Greene; Alexie Leauthaud; Eric Emsellem; Junqiang Ge; Alfonso Aragon-Salamanca; Johnny P. Greco; Yen-Ting Lin; Shude Mao; Karen L. Masters; Michael R. Merrifield; Surhud More; Nobuhiro Okabe; Donald P. Schneider; Daniel Thomas; David Wake; Kaike Pan; Dmitry Bizyaev; Daniel Oravetz; Audrey Simmons; Renbin Yan; F. C. van den Bosch
(abridged) We study the consequence of star formation (SF) in an self-gravity dominated accretion disk in quasars. The warm skins of the SF disk are governed by the radiation from the inner part of the accretion disk to form Compton atmosphere (CAS). The CAS are undergoing four phases to form broad line regions. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of BLRs. Geometry and dynamics of BLRs can be self-consistently derived from the thermal instability of the CAS during phases II and III by linear analysis. The metallicity gradient of SF disk gives rise to different properties of clouds from outer to inner part of BLRs. We find that clouds have column density N_H 10^22 cm^{-2} in the metal-poor regions. The metal-rich clouds compose the high ionization line (HIL) regions whereas the metal-poor clouds are in low ionization line (LIL) regions. Metal-rich clouds in HIL regions will be blown away by radiation pressure, forming the observed outflows. The LIL regions are episodic due to the mass cycle of clouds with the CAS in response to continuous injection by the SF disk, giving rise to different types of AGNs. Based on SDSS quasar spectra, we identify a spectral sequence in light of emission line equivalent width from Phase I to IV. A key phase in the episodic appearance of the BLRs is bright type II AGNs with no or only weak BLRs. We discuss observational implications and tests of the theoretical predictions of this model.
Monthly Notices of the Royal Astronomical Society | 2018
Hongyu Li; Shude Mao; Michele Cappellari; Junqiang Ge; R. J. Long; Ran Li; H. J. Mo; Cheng Li; Zheng Zheng; Kevin Bundy; Daniel Thomas; Joel R. Brownstein; Alexandre Roman Lopes; David R. Law; Niv Drory
The metallicity of active galactic nuclei (AGNs), which can be measured by emission line ratios in their broad- and narrow-line regions (BLRs and NLRs), provides invaluable information about the physical connection between the different components of AGNs. From the archival data bases of the International Ultraviolet Explorer, the Hubble Space Telescope and the Sloan Digital Sky Survey, we have assembled the largest sample available of AGNs which have adequate spectra in both the optical and ultraviolet bands to measure the narrow-line ratio [N ii]/H alpha and also, in the same objects, the broad-line N v/C iv ratio. These permit the measurement of the metallicities in the NLRs and BLRs in the same objects. We find that neither the BLR nor the NLR metallicity correlate with black hole masses or Eddington ratios, but there is a strong correlation between NLR and BLR metallicities. This metallicity correlation implies that outflows from BLRs carry metal-rich gas to NLRs at characteristic radial distances of similar to 1.0 kpc. This chemical connection provides evidence for a kinetic feedback of the outflows to their hosts. Metals transported into the NLR enhance the cooling of the ISM in this region, leading to local star formation after the AGNs turn to narrow-line low-ionization nuclear emission-line regions. This post-AGN star formation is predicted to be observable as an excess continuum emission from the host galaxies in the near-infrared and ultraviolet, which needs to be further explored.
The Astrophysical Journal | 2013
Xinzhong Er; Junqiang Ge; Shude Mao
We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. (2007) group catalog, we identify central and satellite galaxies in groups with halo masses in the range 1012:5 h-1 M_ 1011 h-2 M_ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ~ 30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of centrals and satellites with group finders systematically lowers differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group finding methods will have to be forward modeled via mock catalogs.
Monthly Notices of the Royal Astronomical Society | 2016
Junqiang Ge; Jinhua He; Huirong Yan
We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling (JAM) of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (‘the mass-size’ plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive ( centre