Junqiu Zhang
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junqiu Zhang.
Journal of Bionic Engineering | 2015
Shichao Niu; Bo Li; Zhengzhi Mu; Meng Yang; Junqiu Zhang; Zhiwu Han; Luquan Ren
Morpho butterfly, famous for its iridescence wing scales, has gradually evolved a diversity of functions and has attracted much attention recently. On the other hand, it is known that the wing surface of Morpho butterfly has some complex and sophisticated structures. In fact, they are composed of an alternating multilayer film system of chitin and air layers, which have different refractive indexes. More importantly, these structures can interact strongly with visible light because the feature size of the structures is in the same order of magnitude with light wavelength. It is noteworthy that it is these optical architectures that cause the excellent multifunction including structural color, antireflection, thermal response, selective vapour response, directional adhesion, superhydrophobicity and so on. This review mainly covers the excellent multifunctional features of Morpho butterfly wings with representative functional structures of multilayer film system, photonic crystal and ridges. Then, the mechanism of the structure-based optical multifunction of Morpho butterfly is analyzed. In order to facilitate mechanism analysis, the models of bionic functional structures are reported, as well as the interaction process between the multiscale structures and the external media It is concluded that these functions of Morpho butterfly wings have inevitable and corresponding regularity connection with the structural parameters and the dielectric coefficient of the filled medium. At last, the future direction and prospects of this field are briefly addressed. It is hoped that this review could be beneficial to provide some innovative inspirations and new ideas to the researchers in the fields of engineering, biomedicine, and materials science.
Small | 2016
Zhiwu Han; Zhengzhi Mu; Bo Li; Shichao Niu; Junqiu Zhang; Luquan Ren
A high-transmission, multiple antireflective surface inspired by bilayer 3D ultrafine hierarchical structures in butterfly wing scales is fabricated on a glass substrate using wet chemical biomimetic fabrication. Interestingly, the biomimetic antireflective surface exhibits excellent antireflective properties and high transmission, which provides better characteristics than the butterfly wings and can significantly reduce reflection without losing transparency. These findings offer a new path for generating nanostructured antireflectors with high transmission properties.
Journal of Bionic Engineering | 2013
Zhiwu Han; Wei Yin; Junqiu Zhang; Jialian Jiang; Shichao Niu; Luquan Ren
Tamarisk, a plant that thrives in arid and semi-arid regions, has adapted to blustery conditions by evolving extremely effective and robust anti-erosion surface patterns. However, the details of these unique properties and their structural basis are still unexplored. In this paper, we demonstrate that the tamarisk surface only suffers minor scratches under wind-sand mixture erosion. The results show that the anti-erosion property of bionic sample, inspired by tamarisk surface with different surface morphologies, can be attributed to the flow rotating in the grooves that reduces the particle impact speed. Furthermore, the simulation and experiment on the erosion wear behavior of the bionic samples and bionic centrifugal fan blades show that the bionic surface with V-type groove exhibits the best erosion resistance. The bionic surface on centrifugal fan blades with optimum parameters can effectively improve anti-erosion property by 28.97%. This paper show more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environment, such as helicopter rotor blades, airplane propellers, rocket motor nozzles, and pipes that regularly wear out from erosion.
Small | 2017
Zhiwu Han; Bo Li; Zhengzhi Mu; Shichao Niu; Junqiu Zhang; Luquan Ren
Membrane-based materials with special surface wettability have been applied widely for the treatment of increasing industrial oily waste water, as well as frequent oil spill accidents. However, traditional technologies are energy-intensive and limited, either by fouling or by the inability of a single membrane to separate all types of oil-water mixtures. Herein, a biomimetic monolayer copper membrane (BMCM), composed of multiscale hierarchical dendritic structures, is cleverly designed and successfully fabricated on steel mesh substrate. It not only possesses the ability of energy-efficient oil-water separation but also excellent self-recovery anti-oil-fouling properties (<150 s). The BMCM even keeps high separation efficiency (>93%) after ten-time cycling tests. More importantly, it retains efficient oil-water separation capacity for five different oils. In fact, these advanced features are benefited by the synergistic effect of chemical compositions and physical structures, which is inspired by the typical nonwetting strategy of butterfly wing scales. The findings in this work may inspire a facile but effective strategy for repeatable and antipollution oil-water separation, which is more suitable for various applications under practical conditions, such as wastewater treatment, fuel purification, separation of commercially relevant oily water, and so forth.
Tribology Transactions | 2015
Zhiwu Han; Hailong Feng; Wei Yin; Shichao Niu; Junqiu Zhang; Daobing Chen
To improve the particle erosion resistance of mechanical surfaces, a bionic coupling method inspired by the morphology and flexibility of desert scorpion (Androctonus australis) carapace was proposed in this study. The finite element method based on ANSYS/FLUENT was applied to examine the erosion resistance of a bionic V-shaped model. Subsequently, an experimental research was carried out to compare the particle erosion resistance performance of three types of specimens, namely, smooth, bionic V-shaped, and bionic V-shaped and flexibility coupling. Surface erosion microstructure was also examined under a stereoscopic microscope and a scanning electron microscope to characterize erosive damage. The anti-erosion property of the coupling and V-shaped specimens increased by approximately 74.7 and 57.4% compared to that of the smooth specimen in a 10-min test. The mechanism of particle erosion resistance is also discussed in detail. The particle impact marks that were distributed on the surfaces of both of the V-shaped and coupling specimens were regular.
Advances in Materials Science and Engineering | 2013
Junqiu Zhang; Zhiwu Han; Huina Cao; Wei Yin; Shichao Niu; Huiyuan Wang
Damage caused by erosion has been reported in several industries for a wide range of situations. In the present work, a new method is presented to improve the erosion resistance of machine components by biomimetic method. A numerical investigation of solid particle erosion in the standard and biomimetic configuration blade of axial fan is presented. The analysis consists in the application of the discrete phase model, for modeling the solid particles flow, and the Eulerian conservation equations to the continuous phase. The numerical study employs computational fluid dynamics (CFD) software, based on a finite volume method. User-defined function was used to define wear equation. Gas/solid flow axial fan was simulated to calculate the erosion rate of the particles on the fan blades and comparatively analyzed the erosive wear of the smooth surface, the groove-shaped, and convex hull-shaped biomimetic surface axial flow fan blade. The results show that the groove-shaped biomimetic blade antierosion ability is better than that of the other two fan blades. Thoroughly analyze of antierosion mechanism of the biomimetic blade from many factors including the flow velocity contours and flow path lines, impact velocity, impact angle, particle trajectories, and the number of collisions.
Acta Metallurgica Sinica (english Letters) | 2013
Junqiu Zhang; Zhiwu Han; Wei Yin; Huiyuan Wang; Chao Ge; Jialian Jiang
In this paper, a bionic method was presented to improve the erosion resistance of blade of the centrifugal fan. A numerical investigation of the solid particle erosion on the standard and bionic configuration blade of 4–72№10C centrifugal fan was presented. The numerical study employs computational fluid dynamics (CFD) software, based on a finite volume method, in which the discrete phase model was used to modele the solid particles flow, and the Eulerian conservation equation was adopt to simulate the continuous phase. Moreover, user-defined function was used to define wear equation. The various diameters of the particles were taken into account. The positions of collision of standard and bionic fan blades were discussed, and two kinds of centrifugal fan blade wear were compared. The results show that the particles from the incident source with different positions have different processes of turning and movement when enter into the impeller. The trajectories of flow in the fan channel are significantly different for the particles with different diameters. Bionic fan blade have lower erosion rate than the standard fan blade when the particle size is 20 µm. The anti-erosion mechanism of the bionic fan blade was discussed.
Tribology Transactions | 2017
Wei Yin; Zhiwu Han; Hailong Feng; Junqiu Zhang; Huina Cao; Yu Tian
ABSTRACT Gas–solid erosive wear is a phenomenon in which serious mechanical damage is caused by the impact of solid particles on a wall. In this study, we investigated the erosive wear characteristics and mechanism of biomimetic groove surfaces in gas–solid erosive wear. Orthogonal experimental results showed that the order of the factors that influenced the erosive wear of the biomimetic groove surface was morphology > space > feature size. The V-shaped groove surface exhibited the best erosive wear resistance over the smooth, square, and U-shaped groove surfaces. The surface microstrain calculated by X-ray diffraction lines was used to study the mechanism of erosive wear resistance enhancement of the biomimetic surface. The microstructure of the eroded surface was analyzed by scanning electron microscopy. The appearance of ribs on the biomimetic groove surface increased the erosive wear of the surface in a distal position with respect to the ribs themselves. This article shows more opportunities for bionic application in improving the anti-erosion performance of moving parts that work under dirt and sand particle environments.
Journal of Bionic Engineering | 2017
Zhiwu Han; Jia Fu; Yuqiang Fang; Junqiu Zhang; Shichao Niu; Luquan Ren
The anti-adhesive surfaces have always aroused great interest of worldwide scientists and engineers. But in practical applications, it often faces the threat and impact of temperature and humidity. In this work, the excellent anti-adhesive performance of maize leaf under high temperature and humidity were investigated in detail. Firstly, the adhesion forces of the maize leaf surface under different temperature and humidity were measured by using Atomic Force Microscopy (AFM). The temperature of the substrate was varied between 23 °C to 100 °C, and the ambient relative humidity is from 18% to 100%. It was found that the adhesion force of maize leaf decreased with the increase of temperature and humidity. The mechanism of its excellent anti-adhesive performance of maize leaf under high temperature and relative humidity was revealed. The transverse and longitudinal ridges on maize leaf surface interlace with each other, forming small air pockets, which reduces the actual contact area between the object and the maize leaf. With the increase of humidity, the liquid film will be formed in the air pockets gradually and so much water vapor is produced with increase of temperature. Then the air flow rate increases though the wavy top of transverse ridges, inducing the dramatic decrease of adhesion force. Inspired by this mechanism, four samples with this bionic structure were made. This functional “biomimetic structure” would have potential value in the wide medical equipments such as high frequency electric knife with anti-adhesion surface under high temperature and high humidity.
ACS Applied Materials & Interfaces | 2017
Zhiwu Han; Zhengzhi Mu; Bo Li; Xiaoming Feng; Ze Wang; Junqiu Zhang; Shichao Niu; Luquan Ren
Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO2-based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO2-based BCRs. More importantly, the SiO2-based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.