Junran Cao
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junran Cao.
Neuropsychopharmacology | 2007
Junran Cao; James D. Belluzzi; Sandra E. Loughlin; Daniel E. Keyler; Paul R. Pentel; Frances M. Leslie
We have previously shown that acetaldehyde, a constituent of tobacco smoke, increases nicotine self-administration in adolescent, but not adult, rats. The aim of this study was to determine whether acetaldehyde influences other behavioral, endocrine, or neuronal responses to nicotine at either age. Juvenile (postnatal day (P) 27) and adult (P90) male Sprague–Dawley rats were treated with saline, acetaldehyde (16 μg/kg/injection × 2, i.v.), nicotine (30 μg/kg/injection × 2, i.v.) or a combination of acetaldehyde and nicotine. Locomotion and center time were evaluated for 30 min in a novel open field, before measurement of plasma corticosterone levels and brain c-fos mRNA. Nicotine increased locomotor activity in juveniles but decreased it in adults; in contrast, center time was increased at both ages. Acetaldehyde potentiated nicotines locomotor effects, but not center time. Nicotine induced c-fos expression in the bed nucleus of the stria terminalis, the central nucleus of the amygdala (CeA), nucleus accumbens, and the superior colliculus (SC) at both ages, whereas it activated the hypothalamic paraventricular nucleus (PVN) and consequent corticosterone secretion only in adults. Acetaldehyde potentiated nicotine-induced c-fos in CeA and SC, and activation of PVN c-fos expression/plasma corticosterone release; however, this drug interaction was only observed in behaviorally tested animals, not those that were minimally stressed. Thus, acetaldehyde may modulate the interaction of nicotine and stress. Although pharmacokinetic studies showed that acetaldehyde did not change nicotine levels in either brain or serum, nicotine penetration into the brain was slower in juveniles as compared to adults.
The International Journal of Neuropsychopharmacology | 2011
Jinxue Wei; Jennifer B. Dwyer; Jamie E. Mangold; Junran Cao; Frances M. Leslie; Ming D. Li
Gestational exposure to nicotine affects brain development, leading to numerous behavioural and physiological deficits in the offspring during adolescence. To analyse the molecular mechanisms underlying these effects, a pathway-focused oligonucleotide microarray was used to determine gene expression profiles in five brain regions (i.e. amygdala, prefrontal cortex, nucleus accumbens, periventricular nucleus of the hypothalamus, and caudate putamen CPu) of adolescent rats that received nicotine or saline during gestation. Following appropriate statistical and Gene Set Enrichment Analyses, 24 cell death/survival-related pathways were found to be significantly modulated by gestational nicotine. On the basis of their biological functions, these pathways can be classified into three categories: growth factor, death receptor, and kinase cascade. We employed a quantitative real-time PCR array to verify the findings by measuring the expression of 29 genes involved in cell death/survival-related pathways. Together, our findings indicate that gestational nicotine exposure has significant effects on gene expression in cell death/survival-related pathways in the brains of adolescent offspring. Such effects appear to be brain region-specific and are realized through regulation of the expression of growth factors and receptors, caspases, kinases, and transcription factors. On the basis of these findings, we offer a hypothetical model to explain how gestational nicotine exposure may affect cell death and survival in the brains of adolescent offspring by regulating the balance between growth-factor and death-receptor pathways.
Pharmacology, Biochemistry and Behavior | 2010
Junran Cao; James D. Belluzzi; Sandra E. Loughlin; Jasmin M. Dao; Yiling Chen; Frances M. Leslie
Since adolescence is a critical period for the initiation of tobacco use, we have systematically compared behavioral and endocrine responses to nicotine in Sprague-Dawley rats of both sexes at early adolescence (postnatal day (P) 28), mid- adolescence (P38) and adulthood (P90). Locomotion and center time in a novel open field were evaluated for 30min following intravenous injection of saline or nicotine (60microg/kg), followed by measurement of plasma corticosterone. Complex age and sex differences in behavioral and endocrine response were observed, which were dependent on the functional endpoint examined. Whereas there were age differences in nicotine effects on all functional measures, sex differences were largely restricted to adult stress-related corticosterone and center-time responses. Although significant drug effects were detected at P28 and P90, there was no effect of nicotine at P38 on any measure examined. In saline-treated males, but not females, there were significant positive correlations across age between initial ambulatory counts and both initial vertical counts and total center time. Nicotine treatment increased correlations in both sexes, and yielded a significant negative interaction between initial ambulatory counts and plasma corticosterone. The unique responses of adolescents to nicotine are consistent with an immature function of nicotinic acetylcholine receptors at this age.
Translational Psychiatry | 2013
Junran Cao; Jundong Wang; Jennifer B. Dwyer; Nicole M. Gautier; Shaolin Wang; Frances M. Leslie; Ming D. Li
Myelination defects in the central nervous system (CNS) are associated with various psychiatric disorders, including drug addiction. As these disorders are often observed in individuals prenatally exposed to cigarette smoking, we tested the hypothesis that such exposure impairs central myelination in adolescence, an important period of brain development and the peak age of onset of psychiatric disorders. Pregnant Sprague Dawley rats were treated with nicotine (3 mg kg−1 per day; gestational nicotine (GN)) or gestational saline via osmotic mini pumps from gestational days 4–18. Both male and female offsprings were killed on postnatal day 35 or 36, and three limbic brain regions, the prefrontal cortex (PFC), caudate putamen and nucleus accumbens, were removed for measurement of gene expression and determination of morphological changes using quantitative real-time PCR (qRT-PCR) array, western blotting and immunohistochemical staining. GN altered myelin gene expression at both the mRNA and protein levels, with striking sex differences. Aberrant expression of myelin-related transcription and trophic factors was seen in GN animals, which correlated highly with the alterations in the myelin gene expression. These correlations suggest that these factors contribute to GN-induced alterations in myelin gene expression and also indicate abnormal function of oligodendrocytes (OLGs), the myelin-producing cells in the CNS. It is unlikely that these changes are attributable solely to an alteration in the number of OLGs, as the cell number was changed only in the PFC of GN males. Together, our findings suggest that abnormal brain myelination underlies various psychiatric disorders and drug abuse associated with prenatal exposure to cigarette smoke.
The International Journal of Neuropsychopharmacology | 2011
Junran Cao; Jennifer B. Dwyer; Jamie E. Mangold; Jinxue Wei; Frances M. Leslie; Ming D. Li
Maternal smoking during pregnancy (MS) has long-lasting neurobehavioural effects on the offspring. Many MS-associated psychiatric disorders begin or change symptomatology during adolescence, a period of continuous development of the central nervous system. However, the underlying molecular mechanisms are largely unknown. Given that cell adhesion molecules (CAMs) modulate various neurotransmitter systems and are associated with many psychiatric disorders, we hypothesize that CAMs are altered by prenatal treatment of nicotine, the major psychoactive component in tobacco, in adolescent brains. Pregnant Sprague-Dawley rats were treated with nicotine (3 mg/kg.d) or saline via osmotic mini-pumps from gestational days 4 to 18. Female offspring at postnatal day 35 were sacrificed, and several limbic brain regions (the caudate putamen, nucleus accumbens, prefrontal cortex, and amygdala) were dissected for evaluation of gene expression using microarray and quantitative RT-PCR techniques. Various CAMs including neurexin, immunoglobulin, cadherin, and adhesion-GPCR superfamilies, and their intracellular signalling pathways were modified by gestational nicotine treatment (GN). Among the CAM-related pathways, GN has stronger effects on cytoskeleton reorganization pathways than on gene transcription pathways. These effects were highly region dependent, with the caudate putamen showing the greatest vulnerability. Given the important roles of CAMs in neuronal development and synaptic plasticity, our findings suggest that alteration of CAMs contributes to the neurobehavioural deficits associated with MS. Further, our study underscores that low doses of nicotine produce substantial and long-lasting changes in the brain, implying that nicotine replacement therapy during pregnancy may carry many of the same risks to the offspring as MS.
PLOS ONE | 2013
Ming D. Li; Junran Cao; Shaolin Wang; Sraboni Sarkar; Michael Vigorito; Jennie Z. Ma; Sulie L. Chang
The noninfectious HIV-1 transgenic (HIV-1Tg) rat was developed as a model of AIDs-related pathology and immune dysfunction by manipulation of a noninfectious HIV-1gag-pol virus with a deleted 3-kb SphI-MscI fragment containing the 3′ -region of gag and the 5′ region of pol into F344 rats. Our previous studies revealed significant behavioral differences between HIV-1Tg and F344 control rats in their performance in the Morris water maze and responses to psychostimulants. However, the molecular mechanisms underlying these behavioral differences remain largely unknown. The primary goal of this study was to identify differentially expressed genes and enriched pathways affected by the gag-pol-deleted HIV-1 genome. Using RNA deep sequencing, we sequenced RNA transcripts in the prefrontal cortex, hippocampus, and striatum of HIV-1Tg and F344 rats. A total of 72 RNA samples were analyzed (i.e., 12 animals per group × 2 strains × 3 brain regions). Following deep-sequencing analysis of 50-bp paired-end reads of RNA-Seq, we used Bowtie/Tophat/Cufflinks suites to align these reads into transcripts based on the Rn4 rat reference genome and to measure the relative abundance of each transcript. Statistical analyses on each brain region in the two strains revealed that immune response- and neurotransmission-related pathways were altered in the HIV-1Tg rats, with brain region differences. Other neuronal survival-related pathways, including those encoding myelin proteins, growth factors, and translation regulators, were altered in the HIV-1Tg rats in a brain region-dependent manner. This study is the first deep-sequencing analysis of RNA transcripts associated the HIV-1Tg rat. Considering the functions of the pathways and brain regions examined in this study, our findings of abnormal gene expression patterns in HIV-1Tg rats suggest mechanisms underlying the deficits in learning and memory and vulnerability to drug addiction and other psychiatric disorders observed in HIV-positive patients.
Pharmacology, Biochemistry and Behavior | 2007
Minjung K. Park; James D. Belluzzi; Sun-Ho Han; Junran Cao; Frances M. Leslie
Neonatal handling was used to evaluate the influence of early environment on responses to nicotine. Rats exposed as pups to daily short-term separation from the dam (H) were compared to non-handled (NH) controls. In experiment 1, prepubescent males and females, aged postnatal day (P) 30, were tested for the effect of nicotine/acetaldehyde (NicAc) on open field behavior and plasma corticosterone levels. NicAc induced increases in ambulatory activity and time spent in the center of the field in NH, but not H, males. Drug-induced increases in initial ambulatory activity, but not center time, were also seen in NH and H females. Handling, but not sex, contributed to group differences in plasma corticosterone levels. In experiment 2, NH and H rats were tested for acquisition of NicAc self-administration at three ages, P27-31, P34-38 and P90-94. Age and sex, but not handling, contributed to differences in performance of this task. Whereas males exhibited a decrease in responding with age, females did not. These findings demonstrate that neonatal handling may serve as an experimental model for individual differences in sensitivity to tobacco constituents. Furthermore, the current study indicates that stress reactivity, age and sex may play differential roles in initiating smoking behavior.
PLOS ONE | 2013
Junran Cao; Shaolin Wang; Wen-Yan Cui; Tanseli Nesil; Michael Vigorito; Sulie L. Chang; Ming D. Li
Persons infected with HIV-1 often develop neurologic disorders despite receiving highly active anti-retroviral therapy. Although the underlying mechanism is largely undetermined, our previous RNA-seq-based study showed that the expression of many genes was altered in the central nervous system (CNS) of HIV-1 transgenic (HIV-1Tg) rats. Because nicotine, a natural agonist of nicotinic acetylcholine receptors, exhibits a neuroprotective effect, we presently tested the hypothesis that nicotine restores the expression of altered genes in the CNS of HIV-1Tg rats. Adult male HIV-1Tg and F344 control strain rats were injected with either nicotine (0.25 mg/kg) or saline subcutaneously twice a day for 17 days. Gene expression in the prefrontal cortex (PFC), dorsal hippocampus (HIP), and dorsal striatum (STR) was evaluated using the RNA deep sequencing technique. We found that about 20% of the altered genes in the HIV-1Tg rat were affected by nicotine in each brain region, with the expression of most restored. Analysis of the restored genes showed distinct pathways corrected by nicotine in different brain regions of HIV-1Tg rats. Specifically, the two most significantly restored pathways were Wnt/β-catenin signaling and ephrin B signaling in the PFC, cAMP-responsive element-binding protein (CREB) signaling and glutathione metabolism pathway in the HIP, and tricarboxylic acid (TCA) cycle and calcium signaling in the STR. Together, our findings indicate that cholinergic modulators such as nicotine have beneficial effects on HIV-1-induced neurologic deficits.
Neuroscience Letters | 2013
Junran Cao; Jennifer B. Dwyer; Nicole M. Gautier; Frances M. Leslie; Ming D. Li
Abnormal myelin gene expression in the central nervous system (CNS) is associated with many mental illnesses, including psychiatric disorders and drug addiction. We have previously shown that prenatal exposure to nicotine, the major psychoactive component in cigarette smoke, alters myelin gene expression in the CNS of adolescent rats. To examine whether this effect is specific for adolescents, we examined myelin gene expression in the CNS of juveniles and adults. Pregnant Sprague-Dawley rats were treated with nicotine (3 mg/kg/day; GN) or saline (GS) via osmotic mini pumps from gestational days 4-18. Both male and female offspring were sacrificed at postnatal day P20-21 (juveniles), P35-36 (adolescents), or P59-60 (adults). Three limbic brain regions, the prefrontal cortex (PFC), caudate putamen (CPu), and nucleus accumbens (NAc), were dissected. The expression of genes encoding major myelin components was evaluated using quantitative RT-PCR. We found that GN altered myelin gene expression in juveniles with brain region and sex differences. The pattern of alteration was different from that observed in adolescents. Although these genes were expressed normally in male adults, we observed decreased expression in GN-treated female adults, especially in the CPu. Thus, GN altered myelin gene expression throughout postnatal development and adulthood. The effect on adolescents was quite different from that at other ages, which correlated with the unique symptoms of many psychiatric disorders during adolescence.
Frontiers in Psychiatry | 2012
Junran Cao; Nicole M. Gautier; Ming D. Li
Although both animal and human studies reveal significant contributions of genetics to smoking addiction, many human studies were underpowered or biased by potential confounding variables, and animal genetic studies are challenged by limited genetic variations and lack of convincing phenotypes. To address these concerns, we used non-sibling outbred CD-1 mice to evaluate individual differences in nicotine preference with a modified two-bottle oral self-administration model. Animals were first given free access to two bottles, one filled with nicotine dissolved in 2% saccharin and the other with saccharin only. Under this regular two-bottle choice condition, the majority of animals avoided the nicotine solution with limited individual differences. However, when we modified the model by introducing 4 days of exposure to 5% saccharin in the drinking water, the animals significantly increased nicotine consumption in the two-bottle choice test, with about 30% animals showing a nicotine preference. Nicotine preference after 5% saccharin treatment remained elevated throughout the 28 days of the experiment. Further, we found there existed striking individual differences in nicotine consumption after exposure to 5% saccharin, with a range of 0–100% of total liquid consumption. The enhanced individual differences and the ratio of nicotine consumption were observed at different concentrations of nicotine (10–80 μg/ml) and in both adolescents and adults. Further examination on the induction mechanism showed that the long-lasting nicotine preference was not correlated with nicotine consumption before the induction, 5% saccharin consumption, or weight gain during the induction. Although liquid consumption during the 4 days of 5% saccharin exposure was decreased by about 30%, comparable liquid restriction alone for 4 days did not induce nicotine preference. Together, this study showed a strong and stable nicotine preference in CD-1 mice, which was induced by a short-term high concentration of saccharin in the drinking water. Considering the nature and heterogeneity of CD-1 mice, the striking individual differences imply that genetics plays an important role in nicotine preference observed in these animals.