Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junsong Pan is active.

Publication


Featured researches published by Junsong Pan.


Genetics | 2009

Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants.

Zheng Li; Sanwen Huang; Shiqiang Liu; Junsong Pan; Zhonghua Zhang; Qianyi Tao; Zhiqi Jia; Weiwei Zhang; Huiming Chen; Longting Si; Lihuang Zhu; Run Cai

Sex determination in plants involves a variety of mechanisms. Here, we report the map-based cloning and characterization of the unisexual-flower-controlling gene M. M was identified as a previously characterized putative 1-aminocyclopropane-1-carboxylic acid synthase gene, while the m allele that mutated at a conserved site (Gly33Cys) lost activity in the original enzymatically active allele.


Science China-life Sciences | 2005

Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits.

Gang Wang; Junsong Pan; Xiaozun Li; Huanle He; Aizhong Wu; Run Cai

Using SRAP (sequence-related amplified polymorphism) markers a genetic linkage map of cucumber was constructed with a population consisting of 138 F2 individuals derived from a cross of the two cucumber lines, S06 and S52. In the survey of parental polymorphisms with 182 primer combinations, 64 polymorphism-revealing primer pairs were screened out, which generated totally 108 polymorphic bands with an average of 1.7 bands per primer pair and at most 6 bands from one primer pair. The constructed molecular linkage map included 92 loci, distributed in seven linkage groups and spanning 1164.2 cM in length with an average genetic distance of 12.6 cM between two neighboring loci. Based on this linkage map, the quantitative trait loci (QTL) for the lateral branch number (lbn) and the lateral branch average length (lbl) in cucumber were identified by QTLMapper1.6. A major QTL lbn1 located between ME11SA4B and ME5EM5 in LG2 could explain 10.63% of the total variation with its positively effecting allele from S06. A major QTL lbl1 located between DC1OD3 and DC1EM14 in LG2 could account for 10.38% of the total variation with its positively effecting allele from S06.


Journal of Experimental Botany | 2012

A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.)

Zheng Li; Shu Wang; Qianyi Tao; Junsong Pan; Longting Si; Zhen-Hui Gong; Run Cai

It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the ‘one-hormone hypothesis’, which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified ‘one-hormone hypothesis’ for sex determination in cucumber is proposed.


The Plant Cell | 2015

Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

Zhonghua Zhang; Linyong Mao; Huiming Chen; Fengjiao Bu; Guangcun Li; Jinjing Sun; Shuai Li; Honghe Sun; Chen Jiao; Rachel Blakely; Junsong Pan; Run Cai; Ruibang Luo; Yves Van de Peer; E. Jacobsen; Zhangjun Fei; Sanwen Huang

Genome-wide scanning of large size sequence changes revealed a tandem duplication of a DNA segment that gives rise to cucumbers bearing only female flowers. Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber.


Plant Journal | 2014

Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.)

Xuqin Yang; Weiwei Zhang; Huanle He; Jingtao Nie; Beibei Bie; Junlong Zhao; Guoliang Ren; Yue Li; Dabing Zhang; Junsong Pan; Run Cai

Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies.


Journal of Integrative Plant Biology | 2015

Micro‐trichome as a class I homeodomain‐leucine zipper gene regulates multicellular trichome development in Cucumis sativus

Junlong Zhao; Junsong Pan; Yuan Guan; Weiwei Zhang; Beibei Bie; Yunli Wang; Huanle He; Hong‐Li Lian; Run Cai

Plant trichomes serve as a highly suitable model for investigating cell differentiation at the single-cell level. The regulatory genes involved in unicellular trichome development in Arabidopsis thaliana have been intensively studied, but genes regulating multicellular trichome development in plants remain unclear. Here, we characterized Cucumis sativus (cucumber) trichomes as representative multicellular and unbranched structures, and identified Micro-trichome (Mict), using map-based cloning in an F2 segregating population of 7,936 individuals generated from a spontaneous mict mutant. In mict plants, trichomes in both leaves and fruits, are small, poorly developed, and denser than in the wild type. Sequence analysis revealed that a 2,649-bp genomic deletion, spanning the first and second exons, occurred in a plant-specific class I homeodomain-leucine zipper gene. Tissue-specific expression analysis indicated that Mict is strongly expressed in the trichome cells. Transcriptome profiling identified potential targets of Mict including putative homologs of genes known in other systems to regulate trichome development, meristem determinacy, and hormone responsiveness. Phylogenic analysis charted the relationships among putative homologs in angiosperms. Our paper represents initial steps toward understanding the development of multicellular trichomes.


Frontiers in Plant Science | 2016

A High-Density Genetic Linkage Map for Cucumber (Cucumis sativus L.): Based on Specific Length Amplified Fragment (SLAF) Sequencing and QTL Analysis of Fruit Traits in Cucumber

Wenying Zhu; Long Huang; Long Chen; Jian-Tao Yang; Jia-Ni Wu; Mei-Ling Qu; Danqing Yao; Chunli Guo; Hong‐Li Lian; Huanle He; Junsong Pan; Run Cai

High-density genetic linkage map plays an important role in genome assembly and quantitative trait loci (QTL) fine mapping. Since the coming of next-generation sequencing, makes the structure of high-density linkage maps much more convenient and practical, which simplifies SNP discovery and high-throughput genotyping. In this research, a high-density linkage map of cucumber was structured using specific length amplified fragment sequencing, using 153 F2 populations of S1000 × S1002. The high-density genetic map composed 3,057 SLAFs, including 4,475 SNP markers on seven chromosomes, and spanned 1061.19 cM. The average genetic distance is 0.35 cM. Based on this high-density genome map, QTL analysis was performed on two cucumber fruit traits, fruit length and fruit diameter. There are 15 QTLs for the two fruit traits were detected.


Molecular Genetics and Genomics | 2015

Transcriptome profiling of trichome-less reveals genes associated with multicellular trichome development in Cucumis sativus

Junlong Zhao; Yunli Wang; Danqing Yao; Wenying Zhu; Long Chen; Huanle He; Junsong Pan; Run Cai

Trichomes on plants, similar to fine hairs on animal and human bodies, play important roles in plant survival and development. They also represent a useful model for the study of cell differentiation. Although the regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been well studied, the genes that regulate multicellular trichome development remain unclear. We confirmed that Cucumis sativus (cucumber) trichomes are multicellular and unbranched, but identified a spontaneous mutant, trichome-less (tril), which presented a completely glabrous phenotype. We compared the transcriptome profilings of the tril mutant and wild type using the Illumina HiSeq 2000 sequencing technology. A total of 991 genes exhibited differential expression: 518 were up-regulated and 473 were down-regulated. We further identified 62 differentially expressed genes that encoded crucial transcription factors and were subdivided into seven categories: homeodomain, MADS, MYB, and WRKY domains, ethylene-responsive, zinc finger, and other transcription factor genes. We further analyzed the tissue-expression profiles of two candidate genes, GLABRA2-like and ATHB51-like, using qRT-PCR and found that these two genes were specifically expressed in the epidermis and trichomes, respectively. These results and the tril mutant provide useful tools to study the molecular networks associated with multicellular trichome development.


Frontiers in Plant Science | 2015

Loss-of-Function Mutations in CsMLO1 Confer Durable Powdery Mildew Resistance in Cucumber (Cucumis sativus L.).

Jingtao Nie; Yunli Wang; Huanle He; Chunli Guo; Wenying Zhu; Jian Pan; Dandan Li; Hong‐Li Lian; Junsong Pan; Run Cai

Powdery mildew (PM) is a serious fungal disease of cucumber worldwide. The identification of resistance genes is very important for resistance breeding to ensure cucumber production. Here, natural loss-of-function mutations at an MLO homologous locus, CsMLO1, were found to confer durable PM resistance in cucumber. CsMLO1 encoded a cell membrane protein, was mainly expressed in leaves and cotyledons, and was up-regulated by PM at the early stage of host–pathogen interaction. Ectopic expression of CsMLO1 rescued the phenotype of the PM resistant Atmlo2 Atmlo12 double mutant to PM susceptible in Arabidopsis. Domesticated and wild resistant cucumbers originating from various geographical regions of the world were found to harbor three independent natural mutations that resulted in CsMLO1 loss of function. In addition, between the near-isogenic lines (NILs) of PM resistant and susceptible, S1003 and NIL(Pm5.1), quantitative RT-PCR revealed that there is no difference at expression levels of several genes in the pathways of ethylene, jasmonic acid or salicylic acid. Moreover, the two NILs were used for transcriptome profiling to explore the mechanism underlying the resistance. Several genes correlated with plant cell wall thickening are possibly involved in the PM resistance. This study revealed that loss of function of CsMLO1 conferred durable PM resistance, and that this loss of function is necessary but alone may not be sufficient for PM resistance in cucumber. These findings will facilitate the molecular breeding of PM resistant varieties to control this destructive disease in cucumber.


Genomics | 2015

Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development.

Junlong Zhao; Junsong Pan; Yuan Guan; Jingtao Nie; Jun-Jun Yang; Mei-Ling Qu; Huanle He; Run Cai

The regulatory gene network of unicellular trichome development in Arabidopsis thaliana has been studied intensively, but that of multicellular remains unclear. In the present study, we characterized cucumber trichomes as representative multicellular and unbranched structures, but in a spontaneous mutant, mict (micro-trichome), all trichomes showed a micro-size and stunted morphologies. We revealed the transcriptome profile using Illumina HiSeq 2000 sequencing technology, and determined that a total of 1391 genes exhibited differential expression. We further validated the accuracy of the transcriptome data by RT-qPCR and found that 43 genes encoding critical transcription factors were likely involved in multicellular trichome development. These 43 candidate genes were subdivided into seven groups: homeodomain, MYB-domain, WRKY-domain, bHLH-domain, ethylene-responsive, zinc finger and other transcription factor genes. Our findings also serve as a powerful tool to further study the relevant molecular networks, and provide a new perspective for investigating this complex and species-specific developmental process.

Collaboration


Dive into the Junsong Pan's collaboration.

Top Co-Authors

Avatar

Run Cai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huanle He

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiwei Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Guan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jingtao Nie

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Junlong Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yunli Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jian Pan

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge