Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juntao Luo is active.

Publication


Featured researches published by Juntao Luo.


Biomaterials | 2011

The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles.

Kai Xiao; Yuanpei Li; Juntao Luo; Joyce S. Lee; Wenwu Xiao; Abby M. Gonik; Rinki G. Agarwal; Kit S. Lam

To systematically elucidate the effect of surface charge on the cellular uptake and in vivo fate of PEG-oligocholic acid based micellar nanoparticles (NPs), the distal PEG termini of monomeric PEG-oligocholic acid dendrimers (telodendrimers) are each derivatized with different number (n = 0, 1, 3 and 6) of anionic aspartic acids (negative charge) or cationic lysines (positive charge). Under aqueous condition, these telodendrimers self-assemble to form a series of micellar NPs with various surface charges, but with similar particle sizes. NPs with high surface charge, either positive or negative, were taken up more efficiently by RAW 264.7 murine macrophages after opsonization in fresh mouse serum. Mechanistic studies of cellular uptake of NPs indicated that several distinct endocytic pathways (e.g., clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis) were involved in the cellular uptake process. After their cellular uptake, the majority of NPs were found to localize in the lysosome. Positively charged NPs exhibited dose-dependent hemolytic activities and cytotoxicities against RAW 264.7 cells proportional to the positive surface charge densities; whereas negatively charged NPs did not show obvious hemolytic and cytotoxic properties. In vivo biodistribution studies demonstrated that undesirable liver uptake was very high for highly positively or negatively charged NPs, which is likely due to active phagocytosis by macrophages (Kupffer cells) in the liver. In contrast, liver uptake was very low but tumor uptake was very high when the surface charge of NPs was slightly negative. Based on these studies, we can conclude that slightly negative charge may be introduced to the NPs surface to reduce the undesirable clearance by the reticuloendothelial system (RES) such as liver, improve the blood compatibility, thus deliver the anti-cancer drugs more efficiently to the tumor sites.


Angewandte Chemie | 2012

Well-Defined, Reversible Boronate Crosslinked Nanocarriers for Targeted Drug Delivery in Response to Acidic pH Values and cis-Diols†

Yuanpei Li; Wenwu Xiao; Kai Xiao; Lorenzo Berti; Juntao Luo; Harry P. Tseng; Gabriel Fung; Kit S. Lam

Stimuli-responsive nanoparticles are gaining considerable attention in the field of drug delivery due to their useful physicochemical changes in response to specific triggers, such as pH[1], temperature[2], enzymes[3] or redox conditions[4], present in certain physiological or disease microenvironment of interest. Among these nanoparticles, stimuli-responsive cross-linked micelles (SCMs) represent a versatile nanocarrier system for tumor targeting drug delivery[2c, 4-5]. For instance, SCMs exhibit superior structural stability under physiological condition compared to the non-crosslinked counterpart. As a result, these nanocarriers are able to better retain the encapsulated drug and minimize its premature release while circulating in the blood pool[2c, 4b, 5b]. The introduction of environmentally sensitive crosslinkers makes SCMs responsive to the local environment of the tumor (e.g. tumor extra-cellular pH (6.5-7.2), endosomal/lysosomal pH (4.5–6)[5b, 6], and tumor reductive intra-cellular condition[4-5]). In these instances, the payload drug is released almost exclusively in the cancerous tissue upon accumulation via the well known enhanced permeation and retention (EPR) effect[2c, 4b, 5b].


Biomaterials | 2011

Well-defined, Reversible Disulfide Cross-linked Micelles for On-demand Paclitaxel Delivery

Yuanpei Li; Kai Xiao; Juntao Luo; Wenwu Xiao; Joyce S. Lee; Abby M. Gonik; Jason Kato; Tiffany Dong; Kit S. Lam

To minimize premature release of drugs from their carriers during circulation in the blood stream, we have recently developed reversible disulfide cross-linked micelles (DCMs) that can be triggered to release drug at the tumor site or in cancer cells. We designed and synthesized thiolated linear-dendritic polymers (telodendrimers) by introducing cysteines to the dendritic oligo-lysine backbone of our previously reported telodendrimers comprised of linear polyethylene glycol (PEG) and a dendritic cluster of cholic acids. Reversibly cross-linked micelles were then prepared by the oxidization of thiol groups to disulfide bond in the core of micelles after the self-assembly of thiolated telodendrimers. The DCMs were spherical with a uniform size of 28 nm, and were able to load paclitaxel (PTX) in the core with superior loading capacity up to 35.5% (w/w, drug/micelle). Cross-linking of the micelles within the core reduced their apparent critical micelle concentration and greatly enhanced their stability in non-reductive physiological conditions as well as severe micelle-disrupting conditions. The release of PTX from the DCMs was significantly slower than that from non-cross-linked micelles (NCMs), but can be gradually facilitated by increasing the concentration of reducing agent (glutathione) to an intracellular reductive level. The DCMs demonstrated a longer in vivo blood circulation time, less hemolytic activities, and superior toxicity profiles in nude mice, when compared to NCMs. DCMs were found to be able to preferentially accumulate at the tumor site in nude mice bearing SKOV-3 ovarian cancer xenograft. We also demonstrated that the disulfide cross-linked micellar formulation of PTX (PTX-DCMs) was more efficacious than both free drug and the non-cross-linked formulation of PTX at equivalent doses of PTX in the ovarian cancer xenograft mouse model. The anti-tumor effect of PTX-DCMs can be further enhanced by triggering the release of PTX on-demand by the administration of the FDA approved reducing agent, N-acetylcysteine, after PTX-DCMs have reached the tumor site.


Biomaterials | 2009

A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer

Kai Xiao; Juntao Luo; Wiley L. Fowler; Yuanpei Li; Joyce S. Lee; Li Xing; R. Holland Cheng; Li Wang; Kit S. Lam

Paclitaxel (PTX) is one of the most effective chemotherapeutic drugs for the treatment of a variety of cancers. However, it is associated with serious side effects caused by PTX itself and the Cremophor EL emulsifier. In the present study, we report the development of a well-defined amphiphilic linear-dendritic copolymer (named as telodendrimer) composed of polyethylene glycol (PEG), cholic acid (CA, a facial amphiphilic molecule) and lysine, which can form drug-loaded core/shell micelles when mixed with hydrophobic drug, such as PTX, under aqueous condition. We have used PEG(5k)-CA(8), a representive telodendrimer, to prepare paclitaxel-loaded nanoparticles (PTX-PEG(5k)-CA(8) NPs) with high loading capacity (7.3 mg PTX/mL) and a size of 20-60 nm. This novel nanoformulation of PTX was found to exhibit similar in vitro cytotoxic activity against ovarian cancer cells as the free drug (Taxol) or paclitaxel/human serum albumin nanoaggregate (Abraxane). The maximum tolerated doses (MTDs) of PTX-PEG(5k)-CA(8) NPs after single dose and five consecutive daily doses in mice were approximately 75 and 45 mg PTX/kg, respectively, which were 2.5-fold higher than those of Taxol. In both subcutaneous and orthotopic intraperitoneal murine models of ovarian cancer, PTX-PEG(5k)-CA(8) NPs achieved superior toxicity profiles and anti-tumor effects compared to Taxol and Abraxane at equivalent PTX doses, which were attributed to their preferential tumor accumulation, and deep penetration into tumor tissue, as confirmed by near infrared fluorescence (NIRF) imaging.


Bioconjugate Chemistry | 2010

Well-Defined, Size-Tunable, Multifunctional Micelles for Efficient Paclitaxel Delivery for Cancer Treatment

Juntao Luo; Kai Xiao; Yuanpei Li; Joyce S. Lee; Lifang Shi; Yih Horng Tan; Li Xing; R. Holland Cheng; Gang Yu Liu; Kit S. Lam

We have developed a well-defined and biocompatible amphiphilic telodendrimer system (PEG-b-dendritic oligo-cholic acid) which can self-assemble into multifunctional micelles in aqueous solution for efficient delivery of hydrophobic drugs such as paclitaxel. In this telodendrimer system, cholic acid is essential for the formation of stable micelles with high drug loading capacity, owing to its facial amphiphilicity. A series of telodendrimers with variable length of PEG chain and number of cholic acid in the dendritic blocks were synthesized. The structure and molecular weight of each of these telodendrimers were characterized, and their critical micellization concentration (CMC), drug-loading properties, particle sizes, and cytotoxicity were examined and evaluated for further optimization for anticancer drug delivery. The sizes of the micelles, with and without paclitaxel loading, could be tuned from 11.5 to 21 nm and from 15 to 141 nm, respectively. Optical imaging studies in xenograft models demonstrated preferential uptake of the smaller paclitaxel-loaded micelles (17-60 nm) by the tumor and the larger micelles (150 nm) by the liver and lung. The toxicity and antitumor efficacy profiles of these paclitaxel-loaded micelles in xenograft models were found to be superior to those of Taxol and Abraxane.


Journal of Controlled Release | 2010

A novel size-tunable nanocarrier system for targeted anticancer drug delivery

Yuanpei Li; Kai Xiao; Juntao Luo; Joyce S. Lee; Shirong Pan; Kit S. Lam

We have developed a nanocarrier drug-delivery system based on micelles formed by a new class of well-defined linear PEGylated two-arm oligomer of cholic acids in aqueous solution. By varying the length of the linear PEG chains and the configuration of cholic acid oligomer, one can easily fine-tune the physicochemical properties of the amphiphilic polymers and the resulting micelles. These include particle size, critical micelle concentration, and drug-loading capacity. High level of hydrophobic anticancer drugs such as PTX, etoposide and SN-38 can be readily loaded into such nanocarriers. The loading capacity of the nanocarrier for PTX (PTX) is extremely high (12.0mg/mL), which is equivalent to 37.5% (w/w) of the total mass of the micelle. PTX-loaded nanocarriers are much more stable than Abraxane (PTX/human serum albumin nanoaggregate) when stored in bovine serum albumin solution or dog plasma. PTX release profile from the micelles is burst-free and sustained over a period of seven days. The anti-tumor activity of PTX-loaded nanocarriers against ovarian cancer cell line in vitro, with continuous drug exposure, is similar to Taxol (formulation of PTX dissolved in Cremophor EL and ethanol) or Abraxane. Targeted drug delivery to tumor site with these novel micelles was demonstrated by near infrared fluorescence (NIRF) imaging in nude mice bearing ovarian cancer xenograft. Furthermore, PTX-loaded nanocarriers demonstrated superior anti-tumor efficacy compared to Taxol at equivalent PTX dose in ovarian cancer xenograft model.


Journal of Controlled Release | 2011

PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma

Kai Xiao; Juntao Luo; Yuanpei Li; Joyce S. Lee; Gabriel Fung; Kit S. Lam

Doxorubicin (DOX) is one of most common anti-cancer chemotherapeutic drugs, but its clinical use is associated with dose-limiting cardiotoxicity. We have recently developed a series of PEG-oligocholic acid based telodendrimers, which can efficiently encapsulate hydrophobic drugs and self-assemble to form stable micelles in aqueous condition. In the present study, two representative telodendrimers (PEG(5k)-CA(8) and PEG(2k)-CA(4)) have been applied to prepare DOX micellar formulations for the targeted delivery of DOX to lymphoma. PEG(2k)-CA(4) micelles, compared to PEG(5k)-CA(8) micelles, were found to have higher DOX loading capacity (14.8% vs. 8.2%, w/w), superior stability in physiological condition, and more sustained release profile. Both of these DOX-loaded micelles can be efficiently internalized and release the drug in Raji lymphoma cells. DOX-loaded micelles were found to exhibit similar in vitro cytotoxic activities against both T- and B-lymphoma cells as the free DOX. The maximum tolerated dose (MTD) of DOX-loaded PEG(2k)-CA(4) micelles in mice was approximately 15 mg/kg, which was 1.5-fold higher of the MTD of free DOX. Pharmacokinetics and biodistribution studies demonstrated that both DOX-loaded micelles were able to prolong the blood retention time, preferentially accumulate and penetrate in B-cell lymphomas via the enhanced permeability and retention (EPR) effect. Finally, DOX-PEG(2k)-CA(4) micelles achieved enhanced anti-cancer efficacy and prolonged survival in Raji lymphoma bearing mice, compared to free DOX and PEGylated liposomal DOX (Doxil®) at the equivalent dose. In addition, the analysis of creatine kinase (CK) and lactate dehydrogenase (LDH) serum enzymes level indicated that DOX micellar formulations significantly reduced the cardiotoxicity associated with free DOX.


Langmuir | 2008

Effect of Fluorescently Labeling Protein Probes on Kinetics of Protein-Ligand Reactions

Yung-Shin Sun; James P. Landry; Yiyan Fei; X. D. Zhu; Juntao Luo; Xiaobing Wang; Kit S. Lam

We study the kinetic effect of extrinsic fluorescent labeling agents on protein-ligand binding affinity and find that the kinetics is related to the loss or change of protein function when proteins are fluorescent-labeled.


ACS Applied Materials & Interfaces | 2014

Photo and Redox Dual Responsive Reversibly Cross-Linked Nanocarrier for Efficient Tumor-Targeted Drug Delivery

Yu Shao; Changying Shi; Gaofei Xu; Dandan Guo; Juntao Luo

To develop a feasible and efficient nanocarrier for potential clinical application, a series of photo and redox dual responsive reversibly cross-linked micelles have been developed for the targeted anticancer drug delivery. The nanocarrier can be cross-linked efficiently via a clean, efficient, and controllable coumarin photodimerization within the nanocarrier, which simplify the formulation process and quality control prior clinical use and improve the in vivo stability for tumor targeting. At the same time, cross-linking of nanocarrier could be cleaved via the responsiveness of the built-in disulfide cross-linkage to the redox tumor microenvironment for on-demand drug release. Coumarin and disulfide bond was introduced into a linear-dendritic copolymer (named as telodendrimer) precisely via peptide chemistry. The engineered nanocarrier possesses good drug loading capacity and stability, and exhibits a safer profile as well as similar anticancer effects compared with free drug in cell culture. The in vivo and ex vivo small animal imaging revealed the preferred tumor accumulation and the prolonged tumor residency of the payload delivered by the cross-linked micelles compared to the non-cross-linked micelles and free drug surrogate because of the increased stability.


Nature Communications | 2015

A drug-specific nanocarrier design for efficient anticancer therapy

Changying Shi; Dandan Guo; Kai Xiao; Xu Wang; Lili Wang; Juntao Luo

The drug-loading properties of nanocarriers depend on the chemical structures and properties of their building blocks. Here, we customize telodendrimers (linear-dendritic copolymer) to design a nanocarrier with improved in vivo drug delivery characteristics. We do a virtual screen of a library of small molecules to identify the optimal building blocks for precise telodendrimer synthesis using peptide chemistry. With rationally designed telodendrimer architectures, we then optimize the drug binding affinity of a nanocarrier by introducing an optimal drug-binding molecule (DBM) without sacrificing the stability of the nanocarrier. To validate the computational predictions, we synthesize a series of nanocarriers and evaluate systematically for doxorubicin delivery. Rhein-containing nanocarriers have sustained drug release, prolonged circulation, increased tolerated dose, reduced toxicity, effective tumor targeting and superior anticancer effects owing to favourable doxorubicin-binding affinity and improved nanoparticle stability. This study demonstrates the feasibility and versatility of the de novo design of telodendrimer nanocarriers for specific drug molecules, which is a promising approach to transform nanocarrier development for drug delivery.

Collaboration


Dive into the Juntao Luo's collaboration.

Top Co-Authors

Avatar

Kit S. Lam

University of California

View shared research outputs
Top Co-Authors

Avatar

Changying Shi

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuanpei Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Kai Xiao

University of California

View shared research outputs
Top Co-Authors

Avatar

Joyce S. Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

X. X. Zhu

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Wenwu Xiao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dandan Guo

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge