Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junya Furutani is active.

Publication


Featured researches published by Junya Furutani.


Biochemical Journal | 2005

Role of the vitamin D receptor in FGF23 action on phosphate metabolism

Yoshio Inoue; Hiroko Segawa; Ichiro Kaneko; Setsuko Yamanaka; Kenichiro Kusano; Eri Kawakami; Junya Furutani; Mikiko Ito; Masashi Kuwahata; Hitoshi Saito; Naoshi Fukushima; Shigeaki Kato; Hiro-omi Kanayama; Ken-ichi Miyamoto

FGF23 (fibroblast growth factor 23) is a novel phosphaturic factor that influences vitamin D metabolism and renal re-absorption of Pi. The goal of the present study was to characterize the role of the VDR (vitamin D receptor) in FGF23 action using VDR(-/-) (VDR null) mice. Injection of FGF23M (naked DNA encoding the R179Q mutant of human FGF23) into VDR(-/-) and wildtype VDR(+/+) mice resulted in an elevation in serum FGF23 levels, but had no effect on serum calcium or parathyroid hormone levels. In contrast, injection of FGF23M resulted in significant decreases in serum Pi levels, renal Na/Pi co-transport activity and type II transporter protein levels in both groups when compared with controls injected with mock vector or with FGFWT (naked DNA encoding wild-type human FGF23). Injection of FGF23M resulted in a decrease in 25-hydroxyvitamin D 1a-hydroxylase mRNA levels in VDR(-/-) and VDR(+/+) mice, while 25-hydroxyvitamin D 24-hydroxylase mRNA levels were significantly increased in FGF23M-treated animals compared with mock vector control- or FGF23WT-treated animals. The degree of 24-hydroxylase induction by FGF23M was dependent on the VDR, since FGF23M significantly reduced the levels of serum 1,25(OH)2D3 [1,25-hydroxyvitamin D3] in VDR(+/+) mice, but not in VDR(-/-) mice. We conclude that FGF23 reduces renal Pi transport and 25-hydroxyvitamin D 1a-hydroxylase levels by a mechanism that is independent of the VDR. In contrast, the induction of 25-hydroxyvitamin D 24-hydroxylase and the reduction of serum 1,25(OH)2D3 levels induced by FGF23 are dependent on the VDR.


American Journal of Physiology-renal Physiology | 2009

Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development

Hiroko Segawa; Akemi Onitsuka; Junya Furutani; Ichiro Kaneko; Fumito Aranami; Natsuki Matsumoto; Yuka Tomoe; Masashi Kuwahata; Mikiko Ito; Mitsuru Matsumoto; Minqi Li; Norio Amizuka; Ken-ichi Miyamoto

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare autosomal recessively inherited disorder, characterized by hypophosphatemia, short stature, rickets and/or osteomalacia, and secondary absorptive hypercalciuria. HHRH is caused by a defect in the sodium-dependent phosphate transporter (NaPi-IIc/Npt2c/NPT2c), which was thought to have only a minor role in renal phosphate (P(i)) reabsorption in adult mice. In fact, mice that are null for Npt2c (Npt2c(-/-)) show no evidence for renal phosphate wasting when maintained on a diet with a normal phosphate content. To obtain insights and the relative importance of Npt2a and Npt2c, we now studied Npt2a(-/-)Npt2c(+/+), Npt2a(+/-)Npt2c(-/-), and Npt2a(-/-)Npt2c(-/-) double-knockout (DKO). DKO mice exhibited severe hypophosphatemia, hypercalciuria, and rickets. These findings are different from those in Npt2a KO mice that show only a mild phosphate and bone phenotype that improve over time and from the findings in Npt2c KO mice that show no apparent abnormality in the regulation of phosphate homeostasis. Because of the nonredundant roles of Npt2a and Npt2c, DKO animals showed a more pronounced reduction in P(i) transport activity in the brush-border membrane of renal tubular cells than that in the mice with the single-gene ablations. A high-P(i) diet after weaning rescued plasma phosphate levels and the bone phenotype in DKO mice. Our findings thus showed in mice that Npt2a and Npt2c have independent roles in the regulation of plasma P(i) and bone mineralization.


Journal of The American Society of Nephrology | 2009

Type IIc Sodium–Dependent Phosphate Transporter Regulates Calcium Metabolism

Hiroko Segawa; Akemi Onitsuka; Masashi Kuwahata; Etsuyo Hanabusa; Junya Furutani; Ichiro Kaneko; Yuka Tomoe; Fumito Aranami; Natsuki Matsumoto; Mikiko Ito; Mitsuru Matsumoto; Minqi Li; Norio Amizuka; Ken-ichi Miyamoto

Primary renal inorganic phosphate (Pi) wasting leads to hypophosphatemia, which is associated with skeletal mineralization defects. In humans, mutations in the gene encoding the type IIc sodium-dependent phosphate transporter lead to hereditary hypophophatemic rickets with hypercalciuria, but whether Pi wasting directly causes the bone disorder is unknown. Here, we generated Npt2c-null mice to define the contribution of Npt2c to Pi homeostasis and to bone abnormalities. Homozygous mutants (Npt2c(-/-)) exhibited hypercalcemia, hypercalciuria, and elevated plasma 1,25-dihydroxyvitamin D(3) levels, but they did not develop hypophosphatemia, hyperphosphaturia, renal calcification, rickets, or osteomalacia. The increased levels of 1,25-dihydroxyvitamin D(3) in Npt2c(-/-) mice compared with age-matched Npt2c(+/+) mice may be the result of reduced catabolism, because we observed significantly reduced expression of renal 25-hydroxyvitamin D-24-hydroxylase mRNA but no change in 1alpha-hydroxylase mRNA levels. Enhanced intestinal absorption of calcium (Ca) contributed to the hypercalcemia and increased urinary Ca excretion. Furthermore, plasma levels of the phosphaturic protein fibroblast growth factor 23 were significantly decreased in Npt2c(-/-) mice. Sodium-dependent Pi co-transport at the renal brush border membrane, however, was not different among Npt2c(+/+), Npt2c(+/-), and Npt2c(-/-) mice. In summary, these data suggest that Npt2c maintains normal Ca metabolism, in part by modulating the vitamin D/fibroblast growth factor 23 axis.


American Journal of Physiology-renal Physiology | 2010

Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice

Yuka Tomoe; Hiroko Segawa; Kazuyo Shiozawa; Ichiro Kaneko; Rieko Tominaga; Etsuyo Hanabusa; Fumito Aranami; Junya Furutani; Shoji Kuwahara; Sawako Tatsumi; Mitsutu Matsumoto; Mikiko Ito; Ken-ichi Miyamoto

In the present study, we evaluated the roles of type II and type III sodium-dependent P(i) cotransporters in fibroblast growth factor 23 (FGF23) activity by administering a vector encoding FGF23 with the R179Q mutation (FGF23M) to wild-type (WT) mice, Npt2a knockout (KO) mice, Npt2c KO mice, and Npt2a(-/-)Npt2c(-/-) mice (DKO mice). In Npt2a KO mice, FGF23M induced severe hypophosphatemia and markedly decreased the levels of Npt2c, type III Na-dependent P(i) transporter (PiT2) protein, and renal Na/P(i) transport activity. In contrast, in Npt2c KO mice, FGF23M decreased plasma phosphate levels comparable to those in FGF23M-injected WT mice. In DKO mice with severe hypophosphatemia, FGF23M administration did not induce an additional increase in urinary phosphate excretion. FGF23 administration significantly decreased intestinal Npt2b protein levels in WT mice but had no effect in Npt2a, Npt2c, and DKO mice, despite marked suppression of plasma 1,25(OH)(2)D(3) levels in all the mutant mice. The main findings were as follow: 1) FGF23-dependent phosphaturic activity in Npt2a KO mice is dependent on renal Npt2c and PiT-2 protein; 2) in DKO mice, renal P(i) reabsorption is not further decreased by FGF23M, but renal vitamin D synthesis is suppressed; and 3) downregulation of intestinal Npt2b may be mediated by a factor(s) other than 1,25(OH)(2)D(3). These findings suggest that Npt2a, Npt2c, and PiT-2 are necessary for the phosphaturic activity of FGF23. Thus complementary regulation of Npt2 family proteins may be involved in systemic P(i) homeostasis.


American Journal of Physiology-renal Physiology | 2011

Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b⁺/⁻ mice.

Akiko Ohi; Etsuyo Hanabusa; Otoya Ueda; Hiroko Segawa; Naoshi Horiba; Ichiro Kaneko; Shoji Kuwahara; Tomo Mukai; Shohei Sasaki; Rieko Tominaga; Junya Furutani; Fumito Aranami; Shuichi Ohtomo; Yumiko Oikawa; Yousuke Kawase; Naoko A. Wada; Takanori Tachibe; Mami Kakefuda; Hiromi Tateishi; Kaoru Matsumoto; Sawako Tatsumi; Shinsuke Kido; Naoshi Fukushima; Kou-ichi Jishage; Ken-ichi Miyamoto

An inorganic phosphate (P(i))-restricted diet is important for patients with chronic kidney disease and patients on hemodialysis. Phosphate binders are essential for preventing hyperphosphatemia and ectopic calcification. The sodium-dependent P(i) (Na/P(i)) transport system is involved in intestinal P(i) absorption and is regulated by several factors. The type II sodium-dependent P(i) transporter Npt2b is expressed in the brush-border membrane in intestinal epithelial cells and transports P(i). In the present study, we analyzed the phenotype of Npt2b(-/-) and hetero(+/-) mice. Npt2b(-/-) mice died in utero soon after implantation, indicating that Npt2b is essential for early embryonic development. At 4 wk of age, Npt2b(+/-) mice showed hypophosphatemia and low urinary P(i) excretion. Plasma fibroblast growth factor 23 levels were significantly decreased and 1,25(OH)(2)D(3) levels were significantly increased in Npt2b(+/-) mice compared with Npt2b(+/+) mice. Npt2b mRNA levels were reduced to 50% that in Npt2b(+/+) mice. In contrast, renal Npt2a and Npt2c transporter protein levels were significantly increased in Npt2b(+/-) mice. At 20 wk of age, Npt2b(+/-) mice showed hypophosphaturia and reduced Na/P(i) cotransport activity in the distal intestine. Npt2b(+/+) mice with adenine-induced renal failure had hyperphosphatemia and high plasma creatinine levels. Npt2b(+/-) mice treated with adenine had significantly reduced plasma P(i) levels compared with Npt2b(+/+) mice. Intestinal Npt2b protein and Na(+)/P(i) transport activity levels were significantly lower in Npt2b(+/-) mice than in the Npt2b(+/+) mice. The findings of the present studies suggest that Npt2b is an important target for the prevention of hyperphosphatemia.


Journal of Renal Nutrition | 2013

Dietary Inorganic Phosphorus Regulates the Intestinal Peptide Transporter PepT1

Junya Furutani; Hiroko Segawa; Fumito Aranami; Shoji Kuwahara; Mikio Sugano; Kenji Bannai; Hideyuki Yamato; Mikiko Ito; Ken-ichi Miyamoto

BACKGROUND Both organic and inorganic phosphorus (Pi) are present in regularly consumed foods, such as meats, eggs, and dairy products. Pi is often included in foods as an additive (as hidden phosphorus). The intestinal peptide transporter PepT1 mediates protein absorption, which is disturbed in renal insufficiency. Our aim was to determine the effects of dietary Pi content on the peptide transport activity and expression of PepT1. METHODS The following animal models were used: (1) 7-week-old male Wistar rats; and (2) rats that underwent 3/4 nephrectomy to induce chronic kidney disease (CKD). The rats were fed a normal-protein (20%) diet containing low (0.02%), normal (0.6%), or high (1.2%) Pi levels. They were also fed diets containing varying amounts of protein and either low or normal Pi levels as follows: (1) low Pi/normal protein, (2) low Pi/high (50%) protein, (3) normal Pi/normal protein, and (4) normal Pi/high protein. RESULTS Intestinal peptide transport activity and PepT1 expression levels were significantly higher in the CKD rats than in sham-operated control ones. Compared with the normal-protein diet, the high-protein diet increased PepT1 expression in the CKD rats. Intestinal dipeptide transport activity and PepT1 protein levels did not increase in the rats fed the low-Pi/high-protein diet. In contrast, intestinal dipeptide transport activity and PepT1 protein expression were markedly increased in the rats fed the normal-Pi/high-protein diet. CONCLUSION Dietary Pi levels regulate intestinal peptide transport activity through PepT1.


American Journal of Physiology-renal Physiology | 2007

Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice

Hiroko Segawa; Setsuko Yamanaka; Yasue Ohno; Akemi Onitsuka; Kazuyo Shiozawa; Fumito Aranami; Junya Furutani; Yuka Tomoe; Mikiko Ito; Masashi Kuwahata; Akihiro Imura; Yo-ichi Nabeshima; Ken-ichi Miyamoto


Pflügers Archiv: European Journal of Physiology | 2011

Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters.

Ichiro Kaneko; Hiroko Segawa; Junya Furutani; Shoji Kuwahara; Fumito Aranami; Etsuyo Hanabusa; Rieko Tominaga; Hector Giral; Yupanqui Caldas; Moshe Levi; Shigeaki Kato; Ken-ichi Miyamoto


The Journal of Medical Investigation | 2007

Control of phosphate appetite in young rats

Ritsuko Ohnishi; Hiroko Segawa; Eri Kawakami; Junya Furutani; Mikiko Ito; Sawako Tatsumi; Masashi Kuwahata; Ken-ichi Miyamoto


The Journal of Medical Investigation | 2010

Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium

Fumito Aranami; Hiroko Segawa; Junya Furutani; Shoji Kuwahara; Rieko Tominaga; Etsuyo Hanabusa; Sawako Tatsumi; Shinsuke Kido; Mikiko Ito; Ken-ichi Miyamoto

Collaboration


Dive into the Junya Furutani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikiko Ito

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masashi Kuwahata

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuka Tomoe

University of Tokushima

View shared research outputs
Researchain Logo
Decentralizing Knowledge