Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junyuan Ji is active.

Publication


Featured researches published by Junyuan Ji.


Bioresource Technology | 2012

The structure, density and settlability of anammox granular sludge in high-rate reactors

Huifeng Lu; Ping Zheng; Qixing Ji; Hongtao Zhang; Junyuan Ji; Lan Wang; Shuang Ding; Jiqiang Zhang; Chongjian Tang

Microscopic observation and settling test were carried out to investigate the structure, density and settlability of anammox granules taken from a high-rate upflow anaerobic sludge blanket (UASB) reactor. The results showed that the anammox granules were irregular in shape and uneven on surface, and their structure included granule, subunit, microbial cell cluster and single cell. The gas pockets were often observed in the anammox granules, and they originated from the obstruction of gas tunnel by extracellular polymer substances (EPSs) and the inflation of produced dinitrogen gas. The volume of gas pockets became larger with the increasing diameter of anammox granules, which led to the decreasing density and the floatation of anammox granules. The diameter of anammox granules should be controlled at less than 2.20mm to avoid the granule floatation. A hypothesized mechanism for the granulation and floatation of anammox biomass was proposed.


Bioresource Technology | 2012

Hydraulic characteristics and their effects on working performance of compartmentalized anaerobic reactor.

Junyuan Ji; Kai Zheng; Yajuan Xing; Ping Zheng

The compartmentalized anaerobic reactor (CAR) is a patent novel high-rate reactor and shows a great potential for its application. The hydraulic characteristics and their effects on the working performance of CAR were investigated. The flow pattern tended to plug flow at normal organic loading rate (OLR) and completely mixed flow at high OLRs. The relation of hydraulic dead space (HDS or V(h)) with hydraulic loading rate (HLR or L) and biogas production rate (BPR or G) was V(h) = 3.75 L + 0.19 G-9.47. The hydraulic efficiency of CAR was good or near to good. Both HLR and BPR had significant effects on the hydraulic efficiency, but their effect became less at super-high OLR. They also had a slight influence on the effective volume ratios of CAR, but the influence of BPR almost disappeared at super-high OLR. The good working performance of CAR was ascribed to the improved reactor configuration.


Journal of Hazardous Materials | 2013

Toxicity assessment of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewater by luminescent bacterium.

Junyuan Ji; Yajuan Xing; Zi-Tao Ma; Jing Cai; Ping Zheng; Huifeng Lu

In order to evaluate the effect of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewaters on anaerobic digestion process, their acute toxicities were tested using the 15 min median inhibitory concentration (IC(50)) at pH 7.00 ± 0.05. The results showed that the IC(50) of ethanol, acetate, propionate and butyrate were 19.40, 20.71, 10.47 and 12.17 g L(-1) respectively, which suggested the toxicity descended in the order of propionate, butyrate, ethanol and acetate. The IC(50) of aureomycin, polymyxin and chloromycetin were 12.06, 6.24 and 429.90 mg L(-1) respectively, which indicated the toxicity descended in the order of polymyxin, aureomycin and chloromycetin. Using equitoxic ratio mixing method, the joint toxicities of five groups referred by A (four anaerobic digestion intermediates), B (four anaerobic digestion intermediates and aureomycin), C (four anaerobic digestion intermediates and polymyxin), D (four anaerobic digestion intermediates and chloromycetin) and E (four anaerobic digestion intermediates, aureomycin, polymyxin and chloromycetin) were investigated respectively. Their interactions were additive (A), synergistic (B), additive (C), synergistic (D) and synergistic (E). The investigation would lay a basis for the optimization of anaerobic biotechnology for pharmaceutical wastewater treatment.


Chemosphere | 2013

Acute toxicity of pharmaceutical wastewaters containing antibiotics to anaerobic digestion treatment.

Junyuan Ji; Yajuan Xing; Zi-Tao Ma; Meng Zhang; Ping Zheng

In the present study, a method for prediction of the toxicity of pharmaceutical wastewaters containing antibiotics to microbial communities in anaerobic digestion treatment was developed. Luminescent bacterium assay was carried out with Vibrio fischeri as indicator. The individual and joint toxicities of antibiotics and anaerobic digestion metabolites were investigated by using the 15-min half inhibitory concentration (15 min-IC50) at pH 7.00±0.05. The results showed that the 15 min-IC50 of Amoxicillin, Kanamycin, Lincomycin and Ciprofloxacin were 3.99, 5.11, 4.32 and 5.63 g L(-1) respectively, and the toxicity descended in the order of Amoxicillin, Lincomycin, Kanamycin and Ciprofloxacin. Using equitoxic ratio mixing method, the joint toxicities of four anaerobic digestion intermediates, the four intermediates together with Amoxicillin, Ciprofloxacin, Kanamycin or Lincomycin were determined, which displayed that their interactions were additive, additive, synergistic, synergistic and synergistic respectively. Finally the joint effect of all intermediates and antibiotics was synergistic. The method has promising applications in evaluating the joint toxicity of anaerobic digestion intermediates and antibiotics, and has laid the foundations for assessing the feasibility of anaerobic treatment of pharmaceutical wastewater containing antibiotics.


Bioresource Technology | 2014

Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate

Wei Li; Ping Zheng; Jun Guo; Junyuan Ji; Meng Zhang; Zonghe Zhang; Enchao Zhan; Ghulam Abbas

Denitrification is a self-alkalization process. In this experiment, the characteristics of self-alkalization in high-rate heterotrophic denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate were investigated, respectively. The results showed that, (1) The self-alkalization of high-rate denitrifying reactors was remarkably strong both with methanol and sodium acetate as carbon sources, while the effluent pH was much lower than the stoichiometric values and the malfunction from self-alkalization of denitrification was far less serious than expected. (2) The self-adaptation of the reactors was attributed to the neutralization of carbon dioxide (oxidization product of organic matter) and the self-adaptation of denitrifying sludge. The formation and discharge of calcium carbonate precipitates gave rise to lower effluent pH and alkalinity than the stoichiometric values.


Bioresource Technology | 2014

Floatation of granular sludge and its mechanism: a key approach for high-rate denitrifying reactor.

Wei Li; Ping Zheng; Junyuan Ji; Meng Zhang; Jun Guo; Jiqiang Zhang; Ghulam Abbas

A high-rate denitrifying automatic circulate (DAC) reactor has been developed recently, and it is promising to become an alternative in nitrogen removal from wastewaters. However, the performance of DAC reactor was disturbed by the floatation of granular sludge at high-loads. The results showed that: the floatation of granular sludge led to a serious biomass washout and a sharp decrease of biomass concentration. The floatation of granular sludge was ascribed to a low sludge density originated from the holdup of gaseous products. The average density and average gas holdup ratio of floated granular sludge were 913 kg m(-3) and 11.8% (by volume), respectively. The floatation of granular sludge could disappear by releasing gas when sludge was in the state of elastic expansion, but it would become worse by holding gas when it entered the plastic expansion state. The plastic expansion of granules was significantly correlated with the less content of extracellular polymeric substances.


Bioresource Technology | 2015

Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification

Ru Wang; Ping Zheng; Meng Zhang; He-Ping Zhao; Junyuan Ji; Xiao-Xin Zhou; Wei Li

Nitrate-dependent anaerobic ferrous oxidation (NAFO) is a new and valuable bio-process for the treatment of wastewaters with low C/N ratio, and the NAFO process is in state of the art. The heterotrophic denitrifying sludge (HDS), possessing NAFO activity, was used as bioaugmentation to enhance NAFO efficiency. At a dosage of 6% (V/V), the removal of nitrate and ferrous was 2.4 times and 2.3 times of as primary, and the volumetric removal rate (VRR) of nitrate and ferrous was 2.4 times and 2.2 times of as primary. Tracing experiments of HDS indicated that the bioaugmentation on NAFO reactor was resulted from the NAFO activity by HDS itself. The predominant bacteria in HDS were identified as Thauera (52.5%) and Hyphomicrobium (20.0%) which were typical denitrifying bacteria and had potential ability to oxidize ferrous. In conclusion, HDS could serve as bioaugmentation or a new seeding sludge for operating high-efficiency NAFO reactors.


Bioresource Technology | 2014

Substrates and pathway of electricity generation in a nitrification-based microbial fuel cell.

Hui Chen; Ping Zheng; Jiqiang Zhang; Zuofu Xie; Junyuan Ji; Abbas Ghulam

Nitrification-based microbial fuel cell (N-MFC) is a novel inorganic microbial fuel cell based on nitrification in the anode compartment. So far, little information is available on the substrates and pathway of N-MFC. The results of this study indicated that apart from the primary nitrification substrate (ammonium), the intermediates (hydroxylamine and nitrite) could also serve as anodic fuel to generate current, and the end product nitrate showed an inhibitory effect on electricity generation. Based on the research, a pathway of electricity generation was proposed for N-MFC: ammonium was oxidized first to nitrite by ammonia-oxidizing bacteria (AOB), then the nitrite in anolyte and the potassium permanganate in catholyte constituted a chemical cell to generate current. In other words, the electricity generation in N-MFC was not only supported by microbial reaction as we expected, but both biological and electrochemical reactions contributed.


Applied Microbiology and Biotechnology | 2014

Microbial consortium and its spatial distribution in a compartmentalized anaerobic reactor

Yajuan Xing; Junyuan Ji; Ping Zheng; Jiqiang Zhang; Abbas Ghulam

The compartmentalized anaerobic reactor (CAR) is a patent novel high-rate reactor, which consists of three compartments. The reactor has a great potential for application due to its many advantages. In this work, the microbial consortium, spatial distribution, and their relationship with performance of CAR were investigated by means of polymerase chain reaction, denaturing gradient gel electrophoresis, and fluorescence in situ hybridization. The results showed that the predominant archaea were Methanobacterium, Methanosaeta, and Methanospirillum, and the predominant bacteria were Firmicutes, Deltaproteobacteria, Spirochaetes, Actinobacteria, and Gammaproteobacteria in the microbial consortium. The methanogenic archaea (MA), the hydrogen-producing acetogenic bacteria (HAB), and the hydrolytic fermentative bacteria (HFB) were found to be predominant in the upper, middle, and bottom compartments, respectively. The results revealed that the granular sludge took on a stratified microbial structure. The HFB, HAB, and MA were located in the outer shell, middle layer, and core, respectively. The microbial populations from the bottom compartment were relatively homogeneous in the granular sludge, and from the middle and upper compartments, they were relatively heterogeneous in the granular sludge. The microbial consortia and their spatial distribution were in accordance with the organic loading rate and chemical components in the three compartments.


Archive | 2011

Airlift internal circulation nitrogen and phosphorus removal bioreactor

Ping Zheng; Meng Zhang; Jiqiang Zhang; Junyuan Ji

Collaboration


Dive into the Junyuan Ji's collaboration.

Top Co-Authors

Avatar

Ping Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Li

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Cai

Zhejiang Gongshang University

View shared research outputs
Researchain Logo
Decentralizing Knowledge